留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

亚微米级单分散的密胺树脂微球及其氮掺杂炭微球的制备

马灿良 王再然 胡振慧 王艺华 赵云 师晶

马灿良, 王再然, 胡振慧, 王艺华, 赵云, 师晶. 亚微米级单分散的密胺树脂微球及其氮掺杂炭微球的制备[J]. 新型炭材料, 2020, 35(3): 269-285. doi: 10.1016/S1872-5805(20)60489-9
引用本文: 马灿良, 王再然, 胡振慧, 王艺华, 赵云, 师晶. 亚微米级单分散的密胺树脂微球及其氮掺杂炭微球的制备[J]. 新型炭材料, 2020, 35(3): 269-285. doi: 10.1016/S1872-5805(20)60489-9
MA Can-liang, WANG Zai-ran, HU Zhen-hui, WANG Yi-hua, ZHAO Yun, SHI Jing. Preparation of submicron monodisperse melamine resin microspheres and nitrogen-doped carbon microspheres derived from them[J]. NEW CARBON MATERIALS, 2020, 35(3): 269-285. doi: 10.1016/S1872-5805(20)60489-9
Citation: MA Can-liang, WANG Zai-ran, HU Zhen-hui, WANG Yi-hua, ZHAO Yun, SHI Jing. Preparation of submicron monodisperse melamine resin microspheres and nitrogen-doped carbon microspheres derived from them[J]. NEW CARBON MATERIALS, 2020, 35(3): 269-285. doi: 10.1016/S1872-5805(20)60489-9

亚微米级单分散的密胺树脂微球及其氮掺杂炭微球的制备

doi: 10.1016/S1872-5805(20)60489-9
基金项目: 国家自然科学基金(U1510134,51702191);山西省科技厅2019面上自然基金项目(201901D111037);山西省教育厅2019科技创新项目(2019L0012);山西省"1331工程"重点创新研究团队支持.
详细信息
    通讯作者:

    马灿良,博士,副教授.E-mail:macanliang008@163.com

  • 中图分类号: TQ127.1+1

Preparation of submicron monodisperse melamine resin microspheres and nitrogen-doped carbon microspheres derived from them

Funds: National Scientific Research Funding of China (U1510134, 51702191), Natural Science Foundation of Shanxi Province (201901D111037), Science and Technology Innovation Planning Project in Universities and Colleges of Shanxi Province of China (2019L0012), and the Shanxi "1331 Project" Key Innovative Research Team.
  • 摘要: 亚微米单分散三聚氰胺树脂微球和氮掺杂碳微球的可控制备仍是当今材料领域的一个重要课题。在不添加任何表面活性剂的情况下,仅使用适量的乙酸作为催化剂制备了最小粒径为200纳米的单分散MF微球,这比已报道的强酸制备的MF微球都要小。此外,随着搅拌时间的增加(0~48 h),MF微球的D50并不是简单地增加然后保持稳定,而是进一步下降,再次稳定,最后稳定后的粒径相比最大粒径发生明显收缩,收缩率约40%。在适当的热处理条件下,尤其是将物料均匀地薄薄地铺开,可以得到相应的单分散氮掺杂碳微球,其在800℃下的收缩率为81%~65%,收缩率与搅拌时间有关。最后,从分子形成的角度讨论了MF树脂微球和氮掺杂碳微球形成过程中的上述现象和规律。
  • Li J, Li Q, Li L S, et al. Removal of perfluorooctanoic acid from water with economical mesoporous melamine-formaldehyde resin microsphere[J]. Chemical Engineering Journal, 2017, 320:501-509.
    Schwarz D, Weber J. Organic-solvent free synthesis of mesoporous and narrow-dispersed melamine resin particles for water treatment applications[J]. Polymer, 2018, 155:83-88.
    Ming G, Duan H, Meng X, et al. A novel fabrication of monodisperse melamine-formaldehyde resin microspheres to adsorb lead (II)[J]. Chemical Engineering Journal, 2016, 288:745-757.
    Liu X J, Li H Q, Lin X Y, et al. Synthesis of siloxane-modified melamine-formaldehyde microsphere and its heavy metal ions adsorption by coordination effects[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2015, 482:491-499.
    Liu H, Liu T, Takafuji M, et al. Monodisperse core-shell melamine-formaldehyde polymer-modified silica microspheres prepared using a facile microwave-assisted method[J]. New Journal of Chemistry, 2017, 41:11517-11520.
    Lv Z, Zhao D, Xu S. Facile synthesis of mesoporous melamine-formaldehyde spheres for carbon dioxide capture[J]. RSC advances, 2016, 6:59619-59623.
    Wu Y, Liu J, Ma J, et al. Ratiometric nanothermometer based on rhodamine dye-incorporated F127-melamine-formaldehyde polymer nanoparticle:Preparation, characterization, wide-range temperature sensing, and precise intracellular thermometry[J]. ACS applied materials & interfaces, 2016, 8:14396-14405.
    Wu Y, Li Y, Xu J, Wu D. Incorporating fluorescent dyes into monodisperse melamine-formaldehyde resin microspheres via an organic sol-gel process:A pre-polymer doping strategy[J]. Journal of Materials Chemistry B, 2014, 2:5837-5846.
    Wen P, Wang Y, Wang N, et al. Preparation and characterization of melamine-formaldehyde/Ag composite microspheres with surface-enhanced Raman scattering and antibacterial activities[J]. Journal of colloid and interface science, 2018, 531:544-554.
    You L J, An Q, Guo J, et al. Uniform MF/Ag-NPs core-shell composite microspheres as isolated SERS substrates for quick and sensitive detection of insecticide[J]. RSC advances, 2013, 3:17469-17476.
    Zhang Y, Yan S F, Rao S Q, et al. Preparation of melamine-formaldehyde microspheres and microcapsules based on poly(glutamic acid) by template method[J]. Chemical Journal of Chinese Universities, 2011, 32:239-244.
    Liu Y, Zhu Y, Zhang S, et al. Production and application of hollow capsules templated on melamine-formaldehyde microspheres[J]. The Chinese Journal of Process Engineering, 2004, 4:34-39.
    Fang H, Liu H, Yan F, et al. Preparation of mesoporous hollow spheres of silica and titania using melamine formaldehyde microspheres as templates[J]. Journal of the Chinese Ceramic Society, 2015, 43:215-221.
    Zhang C, Sun G, Ou Yang W, et al. Gadolinium oxide hollow spheres were prepared from melamine-formaldehyde microspheres as templates[J]. Chinese Journal of Materials Research, 2017, 31:47-52.
    Yang X, Wu D, Chen X, et al. Preparation of uniform hollow spheres of Gd2O3 by using melamine-formaldehyde microspheres as templates[J]. The Journal of Physical Chemistry C, 2010, 114:8581-8586.
    Yang M, Zhong Y, Zhou X, et al. Ultrasmall MnO@N-rich carbon nanosheets for high-power asymmetric supercapacitors[J]. Journal of Materials Chemistry A, 2014, 2:12519-12525.
    Ma F W, Sun L P, Zhao H, et al. Supercapacitor performance of hollow carbon spheres by direct pyrolysis of melamine-formaldehyde resin spheres[J]. Chemical Research in Chinese Universities, 2013, 29:735-742.
    Ma F, Zhao H, Sun L, et al. A facile route for nitrogen-doped hollow graphitic carbon spheres with superior performance in supercapacitors[J]. Journal of Materials Chemistry, 2012, 22:13464-13468.
    Liu F, Yuan R L, Zhang N, et al. Solvent-induced synthesis of nitrogen-doped hollow carbon spheres with tunable surface morphology for supercapacitors[J]. Applied Surface Science, 2018, 437:271-280.
    Li W, Chen D, Li Z, et al. Nitrogen enriched mesoporous carbon spheres obtained by a facile method and its application for electrochemical capacitor[J]. Electrochemistry Communications, 2007, 9:569-573.
    Li M, Zhang Y, Yang L, et al. Hollow melamine resin-based carbon spheres/graphene composite with excellent performance for supercapacitors[J]. Electrochimica Acta, 2015, 166:310-319.
    Tan H, Tang J, Henzie J, et al. Assembly of hollow carbon nanospheres on graphene nanosheets and creation of iron-nitrogen-doped porous carbon for oxygen reduction[J]. Acs Nano, 2018, 12:5674-5683.
    Mou S, Lu Y, Jiang Y. A facile and cheap coating method to prepare SiO2/melamine-formaldehyde and SiO2/urea-formaldehyde composite microspheres[J]. Applied Surface Science, 2016, 384:258-262.
    Liu H, Li H, Ding Z, et al. Preparation of porous hollow SiO2 spheres by a modified Stöber process using MF microspheres as templates[J]. Journal of Cluster Science, 2012, 23:273-285.
    Li Q, Liu J J, Sun X, et al. Hierarchically porous melamine-formaldehyde resin microspheres for the removal of nanoparticles and simultaneously as the nanoparticle immobilized carrier for catalysis[J]. ACS Sustainable Chemistry & Engineering, 2018, 7:867-876.
    Cheong I W, Shin J S, Kim J H, et al. Preparation of monodisperse melamine-formaldehyde microspheres via dispersed polycondensation[J]. Macromolecular research, 2004, 12:225-232.
    Wu Y, Li Y, Qin L, et al. Monodispersed or narrow-dispersed melamine-formaldehyde resin polymer colloidal spheres:Preparation, size-control, modification, bioconjugation and particle formation mechanism[J]. Journal of materials chemistry B, 2013, 1:204-212.
    Ding Z, Li H, Wang C. Compared study of the effects of water bath, the microwave irradiation and the ultrasound irradiation on the formation of monodispersed MF spheres[J]. Journal of Functional Materials, 2011, 42:492-496.
    Friedel B, Greulich-Weber S. Preparation of monodisperse, submicrometer carbon spheres by pyrolysis of melamine-formaldehyde resin[J]. Small, 2006, 2:859-863.
    Yang Y, Zou W, Tang K, et al. Fabricarion method of monodispersed and size-tunable melamine-formaldehvde resin microspheres[J]. New Chemical Materials, 2017, 45:116-118.
    Liu Y, Zhu Y, Zhang S, et al. Preparation of monodispersed melamine-formaldehyde microspheres[J]. Journal of Functional Polymers, 2004, 17:113-118.
    Li C, Sun G, Liu S, et al. Preparation of monodispersed melamine-formaldehyde resin microspheres with controllable particle size[J]. Chinese Journal of Colloid & Polymer, 2015, 33:116-118.
    Zhao Y, Liu Z, Chu W, et al. Large-scale synthesis of nitrogen-rich carbon nitride microfibers by using graphitic carbon nitride as precursor[J]. Advanced Materials, 2008, 20:1777-1181.
    Holst J R, Gillan E G. From triazines to heptazines:Deciphering the local structure of amorphous nitrogen-rich carbon nitride materials[J]. Journal of the American Chemical Society, 2008, 130:7373-7379.
    Wickramaratne N P, Xu J T, Wang M, et al. Nitrogen enriched porous carbon spheres:Attractive materials for supercapacitor electrodes and CO2 adsorption[J]. Chemistry of Materials, 2014, 26:2820-2828.
    Yu J Y, Guo M Y, Faheem M, et al. One-pot synthesis of highly ordered nitrogen-containing mesoporous carbon with resorcinol-urea-formaldehyde resin for CO2 capture[J]. Carbon, 2014, 69:502-514.
    Jurcakova D H, Seredych M, Gao Q L, et al. Combined effect of nitrogen- and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors[J]. Advanced Functional Materials, 2009, 19:438-447.
    Zhao X C, Zhang Q, Zhang B S, et al. Dual-heteroatom-modified ordered mesoporous carbon:Hydrothermalfunctionalization, structure, and its electrochemical performance[J]. Journal of Materials Chemistry, 2012, 22:4963-4969.
    Wang J, Liu H Y, Diao J Y, et al. Size-controlled nitrogen-containing mesoporous carbon nanospheres byone-step aqueous self-assembly strategy[J]. Journal of Materials Chemistry A, 2015, 3:2305-2313.
  • 加载中
图(1)
计量
  • 文章访问数:  167
  • HTML全文浏览量:  44
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-20
  • 修回日期:  2020-05-10
  • 刊出日期:  2020-06-28

目录

    /

    返回文章
    返回