留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

原位聚合法在石墨烯/聚合物纳米复合材料中的应用

毛赫南 王晓工

毛赫南, 王晓工. 原位聚合法在石墨烯/聚合物纳米复合材料中的应用. 新型炭材料, 2020, 35(4): 336-343. doi: 10.1016/S1872-5805(20)60493-0
引用本文: 毛赫南, 王晓工. 原位聚合法在石墨烯/聚合物纳米复合材料中的应用. 新型炭材料, 2020, 35(4): 336-343. doi: 10.1016/S1872-5805(20)60493-0
MAO He-nan, WANG Xiao-gong. Use of in-situ polymerization in the preparation of graphene/polymer nanocomposites. New Carbon Mater., 2020, 35(4): 336-343. doi: 10.1016/S1872-5805(20)60493-0
Citation: MAO He-nan, WANG Xiao-gong. Use of in-situ polymerization in the preparation of graphene/polymer nanocomposites. New Carbon Mater., 2020, 35(4): 336-343. doi: 10.1016/S1872-5805(20)60493-0

原位聚合法在石墨烯/聚合物纳米复合材料中的应用

doi: 10.1016/S1872-5805(20)60493-0
详细信息
    通讯作者:

    王晓工,教授.E-mail:wxg-dce@mail.tsinghua.edu.cn

  • 中图分类号: TB33

Use of in-situ polymerization in the preparation of graphene/polymer nanocomposites

  • 摘要: 石墨烯作为一种新型炭材料,2004年通过简单的机械剥离方法制备得到。而氧化石墨烯作为石墨烯的氧化状态,其基面和边缘上存在大量的含氧官能团,可以很好地分散在水中,因而具有很好的加工性和广阔的应用前景,引起了学界的广泛重视。原位聚合法作为一种常用聚合方法,被广泛应用于合成石墨烯/聚合物纳米复合材料。本文着重介绍了石墨烯及氧化石墨烯的定义、不同的制备方法、原位聚合法的基本原理,及其在石墨烯/聚合物纳米复合材料制备过程中的应用进展。
  • Novoselov K S, Geim A K, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306:666.
    Peng Zheng, Wei Zhou, Yibing Wang, et al. N-doped graphene-wrapped TiO2 nanotubes with stable surface Ti3+ for visible-light photocatalysis[J]. Applied Surface Science, 2020, 512:144549.
    Stankovich S, Dikin D A, Dommett G H B, et al. Graphene-based composite materials[J]. Nature, 2006, 442:282.
    Ambrosi A, Chua C K, Bonanni A, et al. Electrochemistry of graphene and related materials[J]. Chemical Reviews, 2014, 114:7150-7188.
    Hummers Jr W S, Offeman R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80:1339-1339.
    Marcano D C, Kosynkin D V, Berlin J M, et al. Improved synthesis of graphene oxide[J]. ACS Nano, 2010, 4:4806-4814.
    Boehm H P, Clauss A, Fischer G O, et al. Dünnste kohlenstoff-folien[J]. Zeitschrift Für Naturforschung B, 1962, 17:150-153.
    Hernandez Y, Nicolosi V, Lotya M, et al. High-yield production of graphene by liquid-phase exfoliation of graphite[J]. Nature Nanotechnology, 2008, 3:563.
    Hernandez Y, Lotya M, Rickard D, et al. Measurement of multicomponent solubility parameters for graphene facilitates solvent discovery[J]. Langmuir, 2009, 26:3208-3213.
    Blake P, Brimicombe P D, Nair R R, et al. Graphene-based liquid crystal device[J]. Nano Letters, 2008, 8:1704-1708.
    Jnioui A, Metrot A, Storck A. Electrochemical production of graphite salts using a three-dimensional electrode of graphite particles[J]. Electrochimica Acta, 1982, 27:1247-1252.
    Takada Y, Fujii R. The electrochemical formation of graphite Intercalation compound in γ-butyrolactone[J]. Tanso, 1985, 1985:110-113.
    Noel M, Santhanam R, Flora M F. Effect of polypyrrole film on the stability and electrochemical activity of fluoride based graphite intercalation compounds in HF media[J]. Journal of Applied Electrochemistry, 1994, 24:455-459.
    Low C T J, Walsh F C, Chakrabarti M H, et al. Electrochemical approaches to the production of graphene flakes and their potential applications[J]. Carbon, 2013, 54:1-21.
    Novoselov K S, Fal V I, Colombo L, et al. A roadmap for graphene[J]. Nature, 2012, 490:192.
    Yang X, Dou X, Rouhanipour A, et al. Two-dimensional graphene nanoribbons. Journal of the American Chemical Society, 2008, 130:4216-4217.
    Cai J, Ruffieux P, Jaafar R, et al. Atomically precise bottom-up fabrication of graphene nanoribbons[J]. Nature, 2010, 466:470.
    Berger C, Song Z, Li T, et al. Ultrathin epitaxial graphite:2D electron gas properties and a route toward graphene-based nanoelectronics[J]. The Journal of Physical Chemistry B, 2004, 108:19912-19916.
    Berger C, Song Z, Li X, et al. Electronic confinement and coherence in patterned epitaxial graphene[J]. Science, 2006, 312:1191-1196.
    Lerf A, He H Y, Forster M, et al. Structure of graphite oxide revisited[J]. J Phys Chem B, 1998, 102:4477.
    Brodie B. Note sur un nouveau procédé pour la purification et la désagrégation du graphite[J]. Ann Chim Phys, 1855, 45:351-353.
    Staudenmaier L. Verfahren zur Darstellung der Graphitsäure[J]. Ber Dtsch Chem Ges, 1898, 31(2):1481-1487.
    Kuilla T, Bhadra S, Yao D, et al. Recent advances in graphene based polymer composites[J]. Progress in Polymer Science, 2010, 35(11):1350-1375.
    Ma L, Wang G J, Dai J F. Preparation and properties of reduced graphene oxide/polyimide composites produced by in-situ polymerization and solution blending methods[J]. New Carbon Materials, 2016, 31(2):129-134.
    Liang J J, Huang Y, Zhang L, et al. Molecular-Level dispersion of graphene into polycvinyl alcohol and effctive reinforcement of their nanocomposites[J]. Adv Funct Mater, 2009, 19(14):2297-2302.
    Kim H, Macosko C W. Processing-property relationships of polycarbonate/graphene composites[J]. Polymer, 2009, 50:3797-3809.
    Mylvaganam K, Zhang L C. In situ polymerization on graphene surfaces[J]. Journal of Physical Chemistry C, 2013, 117(6):2817-2823.
    Hu N, Wei L M, et al. Graphene oxide reinforced polyimide nanocomposites via in situ polymerization[J]. Journal of Nanoscience and Nanotechnology, 2012, 12:173-178
    Qian Y, Lan Y F, et al. Fabrication of polyimide-based nanocomposites containing functionalized graphene oxide nanosheets by in-situ polymerization and their properties[J]. Applied Surface Science, 2014, 314:991-999.
    Bao C L, Guo Y Q, et al. In situ preparation of functionalized graphene oxide/epoxy nanocomposites with effective reinforcements[J]. J Mater Chem, 2011, 21:13290-13298
    Wang X, Hu Y, Song L, et al. In situ polymerization of graphene nanosheets and polyurethane with enhanced mechanical and thermal properties[J]. Journal of Materials Chemistry, 2011, 21(12):4222-4227.
    Hu H T, Wang X B, et al. Preparation and properties of graphene nanosheets-polystyrene nanocomposites via in situ emulsion polymerization[J]. Chemical Physics Letters, 2010, 484(4-6):247-253.
    Miao J, Li H, Qiu H, et al. Graphene/PANI hybrid film with enhanced thermal conductivity by in situ polymerization[J]. Journal of Materials Science, 2018, 53(12):1-11.
    Zheng B N, Gao C. Preparation of graphene nanoscroll/polyaniline composites and their use in high performance supercapacitors[J]. New Carbon Materials, 2016, 31(3):315-320.
    Hu L, Tu J, Jiao S, et al. In situ electrochemical polymerization of a nanorod-PANI-Graphene composite in a reverse micelle electrolyte and its application in a supercapacitor[J]. Physical Chemistry Chemical Physics, 2012, 14(45):15652.
    Ma J, Li Y, Yin X, et al. Poly(vinyl alcohol)/graphene oxide nanocomposites prepared by in situ polymerization with enhanced mechanical properties and water vapor barrier properties[J]. Rsc Adv, 2016, 6(55):49448-49458.
    Yang L P, Kong J H, et al. Highly conductive graphene by low-temperature thermal reduction and in situ preparation of conductive polymer nanocomposites[J]. Nanoscale, 2012, 4(16):4968.
  • 加载中
图(1)
计量
  • 文章访问数:  807
  • HTML全文浏览量:  193
  • PDF下载量:  230
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-02
  • 修回日期:  2020-07-05
  • 刊出日期:  2020-08-28

目录

    /

    返回文章
    返回