留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锂离子电池用CoMoO4/炭颗粒与氮掺杂多孔炭复合材料

朱玉龙 王宜先 高才 赵伟楠 王晓波 吴明铂

朱玉龙, 王宜先, 高才, 赵伟楠, 王晓波, 吴明铂. 锂离子电池用CoMoO4/炭颗粒与氮掺杂多孔炭复合材料[J]. 新型炭材料, 2020, 35(4): 358-370. doi: 10.1016/S1872-5805(20)60494-2
引用本文: 朱玉龙, 王宜先, 高才, 赵伟楠, 王晓波, 吴明铂. 锂离子电池用CoMoO4/炭颗粒与氮掺杂多孔炭复合材料[J]. 新型炭材料, 2020, 35(4): 358-370. doi: 10.1016/S1872-5805(20)60494-2
ZHU Yu-long, WANG Yi-xian, GAO Cai, ZHAO Wei-nan, WANG Xiao-bo, WU Ming-bo. CoMoO4-N-doped carbon hybrid nanoparticles loaded on a petroleum asphalt-based porous carbon for lithium storage[J]. NEW CARBON MATERIALS, 2020, 35(4): 358-370. doi: 10.1016/S1872-5805(20)60494-2
Citation: ZHU Yu-long, WANG Yi-xian, GAO Cai, ZHAO Wei-nan, WANG Xiao-bo, WU Ming-bo. CoMoO4-N-doped carbon hybrid nanoparticles loaded on a petroleum asphalt-based porous carbon for lithium storage[J]. NEW CARBON MATERIALS, 2020, 35(4): 358-370. doi: 10.1016/S1872-5805(20)60494-2

锂离子电池用CoMoO4/炭颗粒与氮掺杂多孔炭复合材料

doi: 10.1016/S1872-5805(20)60494-2
基金项目: 国家自然科学基金(51572296,U1662113);中央高校基本科研基金(15CX08005A);中国石油天然气股份有限公司科学研究与技术开发项目(2016B-2004(GF)).
详细信息
    作者简介:

    朱玉龙,硕士研究生.E-mail:245830503@qq.com

    通讯作者:

    吴明铂,博士.E-mail:wumb@upc.edu.cn

  • 中图分类号: TB33

CoMoO4-N-doped carbon hybrid nanoparticles loaded on a petroleum asphalt-based porous carbon for lithium storage

Funds: National Natural Science Foundation of China (51572296, U1662113), Fundamental Research Funds for the Central Universities (15CX08005A), Financial Support from Taishan Scholar Project, Scientific Research and Technology Development Project of Petrochina Co., LTD (2016B-2004(GF)).
  • 摘要: 超精细过渡金属氧化物(TMO)在储锂方面具有巨大潜力,但在实际应用中还存在易团聚、电导率低等挑战。本文采用双炭复合方法,首先将ZIFs-67固定于模板法制备的石油沥青基多孔炭骨架上,然后将配位Co2+原位转化为CoMoO4@炭纳米颗粒,生成CoMoO4@炭纳米颗粒/多孔炭骨架(CoMoO4@CP/CF)。通过ZIFs-67热解制备出N掺杂炭骨架,从本质上提高CoMoO4电子传输能力,而超细炭纳米颗粒可以有效阻止CoMoO4聚集。基于上述优点,将该复合材料用做锂离子电池负极,电流密度为1 A g-1时,可提供高达818 mAh g-1的可逆比容量。该合成方法为高性能储能电极材料的设计提供了新途径。
  • Wang H L, Zhu Q L, Zou R Q, et al. Metal-organic frameworks for energy applications[J]. Chem, 2017, 2(1):52-80.
    Gao X L, Liu C X, Han G Y, et al. Reduced graphene oxide hydrogels prepared in the presence of phenol for high-performance electrochemical capacitors[J]. New Carbon Materials, 2019, 34(5):403-416.
    Gao X L, Liu C X, Han G Y, et al. Reduced graphene oxide hydrogels prepared in the presence of phenol for high-performance electrochemical capacitors[J]. New Carbon Materials, 2019, 34(5):403-416.
    Chen P, Ren H M, Yan L T, et al. Metal-organic frameworks enabled high-performance separators for safety-reinforced lithium ion battery[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(19), 16612-16619.
    Yao Y, McDowell M T, Ryu I, et al. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life[J]. Nano Letters, 2011, 11(7), 2949-2954.
    Li X H, He Y B, Miao C, et al. Carbon coated porous tin peroxide/carbon composite electrode for lithium-ion batteries with excellent electrochemical properties[J]. Carbon, 2015, 81(1):739-747.
    Ren D Z, Huang H, Qi J G, et al. One-pot template-free cross-linking synthesis of SiOx-SnO2@C hollow spheres as a high volumetric capacity anode for lithium-ion batteries[J]. Energy Technology, 2020, 2000314, 10.1002/ente.202000314.
    Yue X Y, Sun W, Zhang J, et al. Macro-mesoporous hollow carbon spheres as anodes for lithium-ion batteries with high rate capability and excellent cycling performance[J]. J Power Sources, 2016, 331:10-15.
    Ren J, Ren R P, Lv Y K, et al. A flexible 3D graphene@CNT@MoS2 hybrid foam anode for high-performance lithium-ion battery[J]. Chemical Engineering Journal 2018, 5(7):6343-6355.
    Wang Y X, Liu J Y, Pan L, et al. Preparation of carbon nanosheets from petroleum asphalt via recyclable molten-salt method for superior lithium and sodium storage[J]. Carbon, 2017, 122:344-351.
    Kang B, Ceder G. Battery materials for ultrafast charging and discharging[J]. Nature, 2009, 458(7235):190-193.
    Guo Y, Hu J, Wan L. Tin-nanoparticles encapsulated in elastic hollow carbon spheres for hig-performance anode material in lithium ion batteries[J]. Advanced Materials, 2010, 20(6):1160-1165.
    Taberna P L, Mitra S, Poizot P, et al. High rate capabilities Fe3O4-based cu nano-architectured electrodes for lithium-ion battery applications[J]. Nature Materials, 2006, 5(7):567-573.
    Mai L Q, Hu B, Chen W, et al, Lithiated MoO3 nanobelts with greatly improved performance for lithium batteries[J]. Advanced Materials, 2007, 19(21):3712-3716.
    Zhang C C, Cai X, Chen W Y, et al. 3D porous silicon/N-doped carbon composite derived from bamboo charcoal as high-performance anode material for lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8):9930-9939.
    Reddy M V, Zhang B, Kim H, et al. Highly reversible Co3O4/graphene hybrid anode for lithium rechargeable batteries[J]. Carbon, 2011, 49(1):326-332.
    Li Y G, Tan B, Wu Y, et al. Mesoporous Co3O4 Nanowire arrays for lithium ion batteries with high capacity and rate capability[J]. Nano Letters, 2008, 8(1):265-270.
    Peng Zheng, Wei Zhou, Yibing Wang, et al. N-doped graphene-wrapped TiO2 nanotubes with stable surface Ti3+ for visible-light photocatalysis[J]. Applied Surface Science, 2020, 512:144549.
    Park M S, Wang G X, Y M, et al. Preparation and electrochemical properties of SnO2 nanowires for application in lithium-ion batteries[J]. Angewandte. Chemie International Edition, 2007, 119(5):764-767.
    Kong D, Luo J, Wang Y, et al. Three-dimensional Co3O4@MnO2 hierarchical nanoneedle arrays:Morphology control and electrochemical energy storage[J]. Advanced Functional Materials, 2014, 24(24):3815-3826.
    Zhang L, Pu H, Zhao X, et al. Controllable synthesis of core-shell Co@CoO nanocomposites with a superior performance as an anode material for lithium-ion batteries[J]. Journal of Materials Chemistry, 2011, 21(45):18279-18283.
    Ma J W, Fan H Q, Ren X H, et al. A simple absorbent cotton biotemplate to fabricate SnO2 porous microtubules and their gas-sensing properties for chlorine[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(1):147-155.
    Chen Y, Wang Y, Shen X P, et al. Cyanide-metal framework derived CoMoO4/Co3O4 hollow porous octahedrons as advanced anodes for high performance lithium ion batteries[J]. Journal of Material Chemistry A, 2017, 6(3):1048-1056.
    Wang B, Li S, Wu X, et al. Self-assembly of ultrathin mesoporous CoMoO4 nanosheet networks on flexible carbon fabric as a binder-free anode for lithium-ion batteries[J]. New Journal of Chemistry, 2016, 40(3):2259-2267.
    Ahmed B, Shahid M, Nagaraju D, et al. Surface passivation of MoO3 nanorods by atomic layer deposition toward high rate durable li ion battery anodes[J]. ACS Applied Materials & Interfaces, 2015, 7(24):13154-13163.
    Chen N, Yao Y, Wang D, et al. Long life CoMoO4 as a novel anode material for lithium-ion batteries[J]. ACS Appl. Mater Interfaces, 2014, 6(13):10661-10666.
    Li P, Liu J, Liu Y, et al. Three-dimensional ZnMn2O4/porous carbon framework from petroleum asphalt for high performance lithium-ion battery[J]. Electrochim. Acta, 2015, 180:164-172.
    Wu X, Yan P, Yang Y, et al. Mn2CoO4/reduced graphene oxide composite as a promising anode material for lithium-ion batteries[J]. Ceramics International, 2015, 41(3):4080-4086.
    Li L, Liu X, Wang S L, et al. Influence of surface structure on the capacity and irreversible capacity loss of Sn-based anodes for lithium ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(7):1857-1863.
    F Belliard, J T S. Irvine, Electrochemical performance of ball-milled ZnO-SnO2 systems as anodes in lithium-ion battery[J]. Journal of Power Sources, 2001, 97(7):219-222.
    Zhao Y, Li X, Yan B, et al. Recent developments and understanding of novel mixed transition-metal oxides as anodes in lithium ion batteries[J]. Advanced Energy Materials, 2016, 6(8):1502175.
    Wang Y, Wu Y, Xing L, et al. CoMoO4/Fe2O3 core-shell nanorods with high lithium-storage performance as the anode of lithium-ion battery[J]. Journal of Alloys & Compounds, 2016, 689:655-661.
    Yu H, Guan C, Rui X, et al. Hierarchically porous three-dimensional electrodes of CoMoO4 and ZnCo2O4 and their high anode performance for lithium ion batteries[J]. Nanoscale, 2014, 6(18):10556-10561.
    Wang W, Qin J, Yin Z, et al. Achieving Fully Reversible Conversion in MoO3 for Lithium Ion Batteries by Rational Introduction of CoMoO4[J]. ACS Nano, 2016, 10(11):10106.
    Guo J, Zhu H, Zhou S, et al. Fast and large lithium storages from CoMoO4 nanorods-graphene composite[J]. Ionics, 2015, 21(10):1-7.
    Xu J, Gu S, Fan L, et al. Electrospun lotus root-like CoMoO4@graphene nanofibers as high-performance anode for lithium ion batteries[J]. Electrochim. Acta, 2016, 196:125-130.
    Tian W, Liu J, Wang Y, et al. Substrate-assisted in Situ confinement pyrolysis of zeolitic imidazolate frameworks to nitrogen-doped hierarchical porous carbon nanoframes with superior lithium storage[J]. ACS Applied Materials & Interfaces, 2017, 9(49):42845-42855.
    Kaneti Y V, Tang J, Salunkhe R R, et al. Nanoarchitectured design of porous materials and nanocomposites from metal-organic frameworks[J]. Advanced Materials, 2017, 29(12):1604898.
    Hu C, Xiao Y, Zhao Y, et al. Highly nitrogen-doped carbon capsules:scalable preparation and high-performance applications in fuel cells and lithium ion batteries[J]. Nanoscale,2013, 5(7):2726-2733.
    Liu J Y, Liu Y, Li P, et al. Fe-N-doped porous carbon from petroleum asphalt for highly efficient oxygen reduction reaction[J]. Carbon, 2018, 126:1-8.
    Li P, Liu J Y, Wang Y, et al. Synthesis of ultrathin hollow carbon shell from petroleum asphalt for high-performance anode material in lithium-ion batteries[J]. Chemical Engineering Journal, 2016, 286:632-639.
    Liu Y, Li P, Wang Y, et al. A green and template recyclable approach to prepare Fe3O4/porous carbon from petroleum asphalt for lithium-ion batteries[J]. Journal of Alloys & Compounds, 2017, 695:2612-2618.
    Wu Z S, Ren W, Wen L, et al. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance[J]. ACS Nano, 2010, 4(6):3187-3194.
    Yao Y, Gong Y, Yang S, et al. CoMoO4 nanoparticles anchored on reduced graphene oxide nanocomposites as anodes for long-life lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2014, 6(22):20414-20422.
    Jasieniak J J, Treat N D, Mcneill C R, et al. Interfacial characteristics of efficient bulk heterojunction solar cells fabricated on MoOx anode interlayers[J]. Advanced Materials, 2016, 28(20):3944-3951.
    An L, Huang L, Zhou P, et al. A Self-Standing high-performance hydrogen evolution electrode with nanostructured NiCo2O4/CuS heterostructures[J]. Advanced Functional Materials, 2016, 25(43):6814-6822.
    Liu X, Liu W, Ko M, et al. Metal (Ni,Co)-metal oxides/graphene nanocomposites as multifunctional electrocatalysts[J]. Advanced Functional Materials, 2015, 25(36):5799-5808.
    Tian W, Hu H, Wang Y, et al. Metal-organic frameworks mediated synthesis of one-dimensional molybdenum-based/carbon composites for enhanced lithium storage[J]. ACS Nano, 2018, 12(2):1990-2000.
    Chen Y, Liu B, Jiang W, et al. Coaxial three-dimensional CoMoO4 nanowire arrays with conductive coating on carbon cloth for high-performance lithium ion battery anode[J]. Journal of Power Sources, 2015, 300:132-138.
    Zheng C, Luo N J, Huang S P, et al. Nanocomposite of Mo2N quantum dots@MoO3@nitrogen-doped carbon as a high-performance anode for lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(12):10198-10206.
    Xu Z, Wang H, Li Z, et al. Sulfur refines MoO2 distribution enabling improved lithium ion battery performance[J]. Journal of Physical Chemistry C, 2014, 118(32):18387-18396.
    Cherian C T, Reddy M V, Haur S C, et al. Interconnected network of CoMoO4 submicrometer particles as high capacity anode material for lithium ion batteries[J]. ACS Applied Materials & Interfaces, 2013, 5(3):918-923.
    Wang Y X, Tian W, Wang L, et al. A tunable molten-Salt route for scalable synthesis of ultrathin amorphous carbon nanosheets as high-Pperformance anode materials for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(6):5577-5585.
    Zhu X, Zhu Y, Murali S, et al. Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries[J]. ACS Nano, 2011, 5(4):3333-3338.
    Zhang H J, Wang K X, Wu X Y, et al. MoO2/Mo2C heteronanotubes function as high-performance Li-ion battery electrode[J]. Advanced Functional Materials, 2014, 24(22):3399-3404.
    Fan L, Zhang Y, Zhang Q, et al. Graphene aerogels with anchored sub-Micrometer mulberry-like ZnO particles for high-rate and long-cycle anode materials in lithium ion batteries[J]. Small, 2016, 12(37):5208-5216.
    Zheng Z, Zao Y, Zhang Q, et al. Robust erythrocyte-like Fe2O3@carbon with yolk-shell structures as high-performance anode for lithium ion batteries[J]. Chemical Engineering Journal, 2018, 347:563-573.
    Zheng Z, Wu H H, Chen H X, et al. Fabrication and understanding of Cu3Si-Si@carbon@graphene nanocomposites as high-performance anodes for lithium-ion batteries[J]. Nanoscale, 2018, 10(47):22203-22214.
    Zhang Q, Chen H, Luo H, et al. Harnessing the concurrent reaction dynamics in active Si and Ge to achieve high performance of lithium-ion batteries[J]. Energy & Environmental Science, 2018, 11(3):669-681.
  • 加载中
图(1)
计量
  • 文章访问数:  248
  • HTML全文浏览量:  60
  • PDF下载量:  165
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-06
  • 修回日期:  2020-07-08
  • 刊出日期:  2020-08-28

目录

    /

    返回文章
    返回