留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

富炭硬沥青基WO3/TiO2催化剂提升染料和药物降解的光催化行为研究

Zeynep Balta Esra Bilgin Simsek

Zeynep Balta, Esra Bilgin Simsek. 富炭硬沥青基WO3/TiO2催化剂提升染料和药物降解的光催化行为研究. 新型炭材料, 2020, 35(4): 371-383. doi: 10.1016/S1872-5805(20)60495-4
引用本文: Zeynep Balta, Esra Bilgin Simsek. 富炭硬沥青基WO3/TiO2催化剂提升染料和药物降解的光催化行为研究. 新型炭材料, 2020, 35(4): 371-383. doi: 10.1016/S1872-5805(20)60495-4
Zeynep Balta, Esra Bilgin Simsek. Insights into the photocatalytic behavior of carbon-rich shungite-based WO3/TiO2 catalysts for enhanced dye and pharmaceutical degradation. New Carbon Mater., 2020, 35(4): 371-383. doi: 10.1016/S1872-5805(20)60495-4
Citation: Zeynep Balta, Esra Bilgin Simsek. Insights into the photocatalytic behavior of carbon-rich shungite-based WO3/TiO2 catalysts for enhanced dye and pharmaceutical degradation. New Carbon Mater., 2020, 35(4): 371-383. doi: 10.1016/S1872-5805(20)60495-4

富炭硬沥青基WO3/TiO2催化剂提升染料和药物降解的光催化行为研究

doi: 10.1016/S1872-5805(20)60495-4
详细信息
    通讯作者:

    Esra Bilgin Simsek.E-mail:esrabilgin622@gmail.com,ebilgin.simsek@yalova.edu.tr

  • 中图分类号: TB33

Insights into the photocatalytic behavior of carbon-rich shungite-based WO3/TiO2 catalysts for enhanced dye and pharmaceutical degradation

  • 摘要: 采用溶剂热法制备出富炭硬沥青基WO3/TiO2催化剂。通过光电子能谱议(XPS)、红外光谱仪(FTIR)、拉曼光谱仪(Raman)、扫描电镜(SEM)和UV-Vis漫反射光谱仪(DRS)等手段表征催化剂的形貌、结构、光学和物理性质。SEM观察到硬沥青表面完全被WO3/TiO2颗粒覆盖。Raman和XPS分析表明,富炭硬沥青与WO3,TiO2复合良好。DRS结果显示在带隙较低时(2.83 eV),富炭硬沥青基WO3/TiO2催化剂对可见光的吸收性能得到提高。在UV-A辐照下,通过降解橙色II染料和药物来探讨所制催化剂的光催化性能。橙色II染料降解度随着硬沥青添加比例增加而增加,这归因于吸附和光催化的协同效应,即光吸收的增加和光产生的空穴和电子在W/Ti界面容易转移。而且,为了对比硬沥青原料与所制催化剂的吸附性能,在不同pH值下进行了批量吸附实验,并采用等温线和动力吸附模型探讨了温度和吸附值。本研究提供了富炭硬沥青作为自然碳源应用于碳基光催化材料制备思路。
  • Fernández J, Kiwi J, Baeza J, et al. Orange II photocatalysis on immobilised TiO2:Effect of the pH and H2O2[J]. Applied Catalysis B:Environmental, 2004, 48:205-211.
    Wang J, Tang L, Zeng G, et al. Effect of bismuth tungstate with different hierarchical architectures on photocatalytic degradation of norfloxacin under visible light[J]. Transactions of Nonferrous Metals Society of China, 2017, 27:1794-1803.
    Khalid N R, Majid A, Tahir M B, et al. Carbonaceous-TiO2 nanomaterials for photocatalytic degradation of pollutants:A review[J]. Ceramics International, 2017, 43:14552-14571.
    Ren D Z, Huang H, Qi J G, et al. One-pot template-free cross-linking synthesis of SiOx-SnO2@C hollow spheres as a high volumetric capacity anode for lithium-ion batteries[J]. Energy Technology, 2020, 2000314, 10.1002/ente.202000314.
    Yang L, Si Z, Weng D, et al. Synthesis, characterization and photocatalytic activity of porous WO3/TiO2 hollow microspheres[J]. Applied Surface Science, 2014, 313:470-478.
    Khan H, Rigamonti M G, Patience G S, et al. Spray dried TiO2/WO3 heterostructure for photocatalytic applications with residual activity in the dark[J]. Applied Catalysis B:Environmental, 2018, 226:311-323.
    Li Y F, Xu D, Oh J I, et al. Mechanistic study of codoped titania with nonmetal and metal ions:A case of C + Mo codoped TiO2[J]. American Chemical Society, 2012, 2:391-398.
    Su D, Wang J, Tang Y, et al. Constructing WO3/TiO2 composite structure towards sufficient use of solar energy[J]. Chemical Communication, 2011,47:4231-4233.
    Peng Zheng, Wei Zhou, Yibing Wang, et al. N-doped graphene-wrapped TiO2 nanotubes with stable surface Ti3+ for visible-light photocatalysis[J]. Applied Surface Science, 2020, 512:144549.
    Wang C, Luo S, Liu C, et al. WO3 quantum dots enhanced the photocatalytic performances of graphene oxide/TiO2 films under flowing dye solution[J]. Inorganic Chemistry Commununications, 2020, 115:107875.
    Wang G, Chen Q, Liu Y, et al. In situ synthesis of graphene/WO3 co-decorated TiO2 nanotube array photoelectrodes with enhanced photocatalytic activity and degradation mechanism for dimethyl phthalate[J]. Chemical Engineering Jourmal, 2018, 337:322-332.
    Cai Z, Hao X, Sun X, et al. Highly active WO3@anatase-SiO2 aerogel for solar-light-driven phenanthrene degradation:Mechanism insight and toxicity assessment[J]. Water Research, 2019, 162:369-382.
    Rangkooy H A, Ghaedi H, Jahani F. Removal of xylene vapor pollutant from the air using new hybrid substrates of TiO2-WO3 nanoparticles immobilized on the ZSM-5 zeolite under UV radiation at ambient temperature:Experimental towards modeling[J]. Journal of Environmental Chemical Engineering, 2019, 7:103247.
    Sun J, Wang Y, Sun R, et al. Photodegradation of azo dye congo red from aqueous solution by the WO3-TiO2/activated carbon (AC) photocatalyst under the UV irradiation[J]. Material Chemistry and Physics, 2009, 115:303-308.
    Yang C, Zhu Y, Wang J, et al. Hydrothermal synthesis of TiO2-WO3-bentonite composites:Conventional versus ultrasonic pretreatments and their adsorption of methylene blue[J]. Applied Clay Science, 2015, 105-106:243-251.
    Jaritkaun N, Wootthikanokkhan J, Piewnuan C, et al. Inducing catalytic activity in the dark of TiO2/WO3 mixed metal oxides by using an in situ polymerized semiconductive[J]. Polymeric Binder, 2016, 46:1705-1714.
    Ibrahim M M, Ahmed S A, Khairou K S, et al. Carbon nanotube/titanium nanotube composites loaded platinum nanoparticles as high performance photocatalysts[J]. Applied Catalysis A:General, 2014, 475:90-97.
    Silva M R F, Lourenψo M A O, Seabra M P, et al. Carbon-modified titanium oxide materials for photocatalytic water and air decontamination[J]. Chemical Engineering Journal, 2020, 387:124099.
    Kumar S G, Rao K S R K. Comparison of modification strategies towards enhanced charge carrier separation and photocatalytic degradation activity of metal oxide semiconductors (TiO2, WO3 and ZnO)[J]. Applied Surface Science, 2017, 391:124-148.
    Golubev Y A, Antonets I V, Shcheglov V I. Static and dynamic conductivity of nanostructured carbonaceous shungite geomaterials[J]. Materials Chemistry and Physics, 2019, 226:195-203.
    Gusmão R, Sofer Z, Bouša D, et al. Synergetic metals on carbocatalyst shungite[J]. Chem Eur J, 2017, 23:18232-18238.
    Moshnikov I A, Kovalevski V V. Composite materials based on nanostructured shungite filler[J]. Materials Today Proceedings, 2018, 5:25971-25975.
    Skrypnychuk V, Boulanger N, Nordenström A, et al. Aqueous activated graphene dispersions for deposition of high-surface area supercapacitor electrodes[J]. J Phys Chem Lett, 2020, 11(8):3032-3038.
    Sheka E F, Golubev E A. Technical graphene (reduced graphene oxide) and its natural analog (shungite)[J]. Technical Physics, 2016, 61:1032-1038.
    Skorobogatov G A, Ashmarova Y A, Rebrova A G. Transformations of shungite in aqueous media (pH from 1 to 12)[J]. Russian Journal of Applied Chemistry, 2017, 90:113-119.
    Ermagambet B T, Nurgaliyev N U, Abylgazina L D, et al. Fischer-Tropsch synthesis using cobalt catalyst containing modified shungite[J]. Solid Fuel Chemistry, 2017, 51:101-106.
    Chou N H, Pierce N, Lei Y, et al. Carbon-rich shungite as a natural resource for efficient Li-ion battery electrodes[J]. Carbon, 2018, 130:105-111.
    Ismail A A, Abdelfattah I, Helal A, et al. Ease synthesis of mesoporous WO3/TiO2 nanocomposites with enhanced photocatalytic performance for photodegradation of herbicide imazapyr under visible light and UV illumination[J]. Journal of Hazardous Materials, 2016, 307:43-54.
    Pan J H, Lee W I. Preparation of highly ordered cubic mesoporous WO3/TiO2 films and their photocatalytic properties[J]. Chemistry of Materials, 2006, 18:847-853.
    Shi J, Cui H, Chen J, et al. TiO2/activated carbon fibers photocatalyst:Effects of coating procedures on the microstructure, adhesion property, and photocatalytic ability[J]. Journal of Colloid and Interface Science, 2012, 388:201-208.
    Wang G, Chen Q, Xin Y, et al. Construction of graphene-WO3/TiO2 nanotube array photoelectrodes and its enhanced performance for photocatalytic degradation of dimethyl phthalate[J]. Electrochimica Acta, 2016, 222:1903-1913.
    Wang J, Tang L, Zeng G, et al. 0D/2D interface engineering of carbon quantum dots modified Bi2WO6 ultrathin nanosheets with enhanced photoactivity for full spectrum light utilization and mechanism insight[J]. Applied Catalysis B:Environmental, 2018, 222:115-123.
    Ahmed B, Kumar S, Ojha A K, et al. Facile and controlled synthesis of aligned WO3 nanorods and nanosheets as an efficient photocatalyst material[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2017, 175:250-261.
    Ramos-Delgado N A, Gracia-Pinilla M A, Maya-Treviño L, et al. Solar photocatalytic activity of TiO2 modified with WO3 on the degradation of an organophosphorus pesticide[J]. Journal of Hazardous Materials, 2013, 263:36-44.
    Panahian Y, Arsalani N, Nasiri R. Enhanced photo and sono-photo degradation of crystal violet dye in aqueous solution by 3D flower like F-TiO2(B)/fullerene under visible light[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2018, 365:45-51.
    Tucureanu V, Matei A, Avram A M. FTIR spectroscopy for carbon family study[J]. Critical Reviews in Analytical Chemistry, 2016, 46:502-520.
    Wang S, Liu C, Dai K, et al. Fullerene C70-TiO2 hybrid with enhanced photocatalytic activity under visible light irradiation[J]. Journal of Materials Chemistry A, 2015, 3:21090-21098.
    Mehmood F, Iqbal J, Jan T, et al. Structural, Raman and photoluminescence properties of Fe doped WO3 nanoplates with anti cancer and visible light driven photocatalytic activities[J]. Journal of Alloys and Compounds, 2017, 728:1329-1337.
    Shi M, Shen J, Ma H, et al. Preparation of graphene-TiO2 composite by hydrothermal method from peroxotitanium acid and its photocatalytic properties[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2012, 405:30-37.
    Sharma M, Singh J, Hazra S, et al. Adsorption of heavy metal ions by mesoporous ZnO and TiO2@ZnO monoliths:Adsorption and kinetic studies[J]. Microchemical Journal, 2019, 145:105-112.
    Garcí E R, Ló R, May-Lozano M, et al. Adsorption of azo-dye orange II from aqueous solutions using a metal-organic framework material:Iron-benzenetricarboxylate[J]. Materials, 2014, 7:8037-8057.
    Itodo A U, Itodo H U, Sorption energies estimation using dubinin-radushkevich and temkin adsorption isotherms[J]. Life Science Journal, 2010, 7:31-39.
    Konicki W, Aleksandrzak M, Moszynski D, et al. Adsorption of anionic azo-dyes from aqueous solutions onto graphene oxide:Equilibrium, kinetic and thermodynamic studies[J]. Journal of Colloid and Interface Science, 2017, 496:188-200.
    Bilgin Simsek E, Beker U, Senkal B F. Predicting the dynamics and performance of selective polymeric resins in a fixed bed system for boron removal[J]. Desalination, 2014, 349:39-50.
    Bilgin Simsek E, Novak I, Sausa O, et al. Microporous carbon fibers prepared from cellulose as efficient sorbents for removal of chlorinated phenols[J]. Research on Chemical Intermediates, 2017, 43:503-522.
    Mutyala S, Jonnalagadda M, Mitta H. CO2 capture and adsorption kinetic study of amine-modified MIL-101(Cr)[J]. Chemical Engineering Research and Design, 2019, 143:241-248.
    Qu J, Yu Z, Zang Y, et al. A CoMn2O3.5-RGO hybrid as an effective Fenton-like catalyst for the decomposition of various dyes[J]. New Carbon Materials, 2019, 34:539-545.
    Wu M, Chen W, Mao Q, et al. Facile synthesis of chitosan/gelatin filled with graphene bead adsorbent for orange II removal[J]. Chemical Engineering Research and Design, 2019, 144:35-46.
    Cho E, Ciou J, Zheng J, et al. Fullerene C70 decorated TiO2 nanowires for visible-light-responsive photocatalyst[J]. Applied Surface Science, 2015, 355:536-546.
    Wang C, Zhu L, Wei M, et al. Photolytic reaction mechanism and impacts of coexisting substances on photodegradation of bisphenol A by Bi2WO6 in water[J]. Water Research, 2012, 46:845-853.
    Cruz M, Gomez C, Duran-valle C J, et al. Bare TiO2 and graphene oxide TiO2 photocatalysts on the degradation of selected pesticides and influence of the water matrix[J]. Applied Surface Science, 2017, 416:1013-1021.
    Nguyen T B, Huang C P, Doong R-a. Photocatalytic degradation of bisphenol A over a ZnFe2O4/TiO2 nanocomposite under visible light[J]. Science of the Total Environment, 2019, 646:745-756.
    Gonzalez J A, Bafico J G, Villanueva M E, et al. Continuous flow adsorption of ciprofloxacin by using a nanostructured chitin/graphene oxide hybrid material[J]. Carbohydrate Polymers, 2018, 188:213-220.
  • 加载中
图(1)
计量
  • 文章访问数:  713
  • HTML全文浏览量:  217
  • PDF下载量:  137
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-02
  • 修回日期:  2020-07-05
  • 刊出日期:  2020-08-28

目录

    /

    返回文章
    返回