留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧化石墨烯/聚合物基复合膜对水,氨水与二氯甲烷的渗透性

Ali Asghar Zomorodkia Saeed Bazgir Davood Zaarei Mohsen Gorji Mehdi Ardjmand

Ali Asghar Zomorodkia, Saeed Bazgir, Davood Zaarei, Mohsen Gorji, Mehdi Ardjmand. 氧化石墨烯/聚合物基复合膜对水,氨水与二氯甲烷的渗透性. 新型炭材料, 2020, 35(6): 739-751. doi: 10.1016/S1872-5805(20)60514-5
引用本文: Ali Asghar Zomorodkia, Saeed Bazgir, Davood Zaarei, Mohsen Gorji, Mehdi Ardjmand. 氧化石墨烯/聚合物基复合膜对水,氨水与二氯甲烷的渗透性. 新型炭材料, 2020, 35(6): 739-751. doi: 10.1016/S1872-5805(20)60514-5
Ali Asghar Zomorodkia, Saeed Bazgir, Davood Zaarei, Mohsen Gorji, Mehdi Ardjmand. Permeation of water, ammonia and dichloromethane through graphene oxide/polymeric matrix composite membranes. New Carbon Mater., 2020, 35(6): 739-751. doi: 10.1016/S1872-5805(20)60514-5
Citation: Ali Asghar Zomorodkia, Saeed Bazgir, Davood Zaarei, Mohsen Gorji, Mehdi Ardjmand. Permeation of water, ammonia and dichloromethane through graphene oxide/polymeric matrix composite membranes. New Carbon Mater., 2020, 35(6): 739-751. doi: 10.1016/S1872-5805(20)60514-5

氧化石墨烯/聚合物基复合膜对水,氨水与二氯甲烷的渗透性

doi: 10.1016/S1872-5805(20)60514-5
详细信息
    通讯作者:

    Saeed Bazgir.E-mail:bazgir@srbiau.ac.ir

  • 中图分类号: TB33

Permeation of water, ammonia and dichloromethane through graphene oxide/polymeric matrix composite membranes

  • 摘要: 以氧化石墨烯(GO)、聚氨酯(PU)和亲水性聚2-丙烯酰胺-2-甲基丙烷磺酸(PAMPS)为原料,制备出无支撑的PU基复合膜和PAMPS基复合膜。研究氧化石墨烯聚合物基膜用于含极性材料废液如水、氨水、以及含非极性二氯甲烷和氨-二氯甲烷混合废液的渗透行为。采用不同表征方法如X射线衍射仪(XRD)、接触角、场发射扫描电子显微镜(FESEM)、红外光谱仪(FT-IR)和力学性能测试仪来评价所制复合膜的综合性能。采用ASTM E96/96-M14设备进行复合膜的渗透测试。结果表明,PAMPS基复合膜因较高的亲水性,具有最佳的水和氨渗透性能,而PU基复合膜具有最佳的二氯甲烷渗透性,最差的水和氨的渗透性。
  • Lee C T, Y S Wang. High-performance room temperature NH3 gas sensors based on polyaniline-reduced graphene oxide nanocomposite sensitive membrane[J]. Journal of Alloys and Compounds, 2019, 789:693-696.
    Smith A T, A M LaChance, S Zeng, et al. Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites[J]. Nano Materials Science, 2019, 1(1):31-47.
    Lee S P, G A Ali, H Algarni, et al. Flake size-dependent adsorption of graphene oxide aerogel[J]. Journal of Molecular Liquids, 2019, 277:175-180.
    Ma J, D Ping, X Dong. Recent developments of graphene oxide-based membranes:a review[J]. Membranes, 2017, 7(3):52.
    Huang H, Y Mao, Y Ying, et al. Salt concentration, pH and pressure controlled separation of small molecules through lamellar graphene oxide membranes[J]. Chemical Communications, 2013, 49(53):5963-5965.
    Kim H W, H W Yoon, S M Yoon, et al. Selective gas transport through few-layered graphene and graphene oxide membranes[J]. Science, 2013, 342(6154):91-95.
    Shen J, M Zhang, G Liu, et al. Facile tailoring of the two-dimensional graphene oxide channels for gas separation[J]. RSC advances, 2016, 6(59):54281-54285.
    Song W, B Wang, L Fan, et al. Graphene oxide/waterborne polyurethane composites for fine pattern fabrication and ultrastrong ultraviolet protection cotton fabric via screen printing[J]. Applied Surface Science, 2019, 463:403-411.
    Noh M J, M J Oh, J H Choi, et al. Layer-by-layer assembled multilayers of charged polyurethane and graphene oxide platelets for flexible and stretchable gas barrier films[J]. Soft Matter, 2018, 14(32):6708-6715.
    Kim D W, H Kim, M L Jin, et al. Impermeable gas barrier coating by facilitated diffusion of ethylenediamine through graphene oxide liquid crystals[J]. Carbon, 2019, 149:28-35.
    Zhang Y, J Ma, Y Bai, et al. The preparation and properties of nanocomposite from bio-based polyurethane and graphene oxide for gas separation[J]. Nanomaterials, 2019, 9(1):15.
    Liu H D, Z Y Liu, M B Yang, et al. Surperhydrophobic polyurethane foam modified by graphene oxide[J]. Journal of Applied Polymer Science, 2013, 130(5):3530-3536.
    Liu Y, J Ma, T Wu, et al. Cost-effective reduced graphene oxide-coated polyurethane sponge as a highly efficient and reusable oil-absorbent[J]. ACS Applied Materials & Interfaces, 2013, 5(20):10018-10026.
    Yang S, L Chen, C Wang, et al. Surface roughness induced superhydrophobicity of graphene foam for oil-water separation[J]. Journal of Colloid and Interface Science, 2017, 508:254-262.
    Zhu H, D Chen, W An, et al. A robust and cost-effective superhydrophobic graphene foam for efficient oil and organic solvent recovery[J]. Small, 2015, 11(39):5222-5229.
    Zhang L, H Li, X Lai, et al. Thiolated graphene-based superhydrophobic sponges for oil-water separation[J]. Chemical Engineering Journal, 2017, 316:736-743.
    Song S, H Yang, C Su, et al. Ultrasonic-microwave assisted synthesis of stable reduced graphene oxide modified melamine foam with superhydrophobicity and high oil adsorption capacities[J]. Chemical Engineering Journal, 2016, 306:504-511.
    Tang Y, C Guan, Y Liu, et al. Preparation and absorption studies of poly (acrylic acid-co-2-acrylamide-2-methyl-1-propane sulfonic acid)/graphene oxide superabsorbent composite[J]. Polymer Bulletin, 2019, 76(3):1383-1399.
    Liu Y, J Li, X Cheng, et al. Self-assembled antibacterial coating by N-halamine polyelectrolytes on a cellulose substrate[J]. Journal of Materials Chemistry B, 2015, 3(7):1446-1454.
    Hemmati K, R Sahraei, M Ghaemy. Synthesis and characterization of a novel magnetic molecularly imprinted polymer with incorporated graphene oxide for drug delivery[J]. Polymer, 2016, 101:257-268.
    Gorji M, A Sadeghian Maryan. Breathable-windproof membrane via simultaneous electrospinning of PU and P (AMPS-GO) hybrid nanofiber:Modeling and optimization with response surface methodology[J]. Journal of Industrial Textiles, 2018, 47(7):1645-1663.
    Gorji M, M Karimi, S Nasheroahkam. Electrospun PU/P (AMPS-GO) nanofibrous membrane with dual-mode hydrophobic-hydrophilic properties for protective clothing applications[J]. Journal of Industrial Textiles, 2018, 47(6):1166-1184.
    Yang C, Z Liu, C Chen, et al. Reduced graphene oxide-containing smart hydrogels with excellent electro-response and mechanical properties for soft actuators[J]. ACS applied materials & interfaces, 2017, 9(18):15758-15767.
    Lian C, Z Lin, T Wang, et al. Self-reinforcement of PNIPAm-Laponite nanocomposite gels investigated by atom force microscopy nanoindentation[J]. Macromolecules, 2012, 45(17):7220-7227.
    Fan J, Z Shi, M Lian, et al. Mechanically strong graphene oxide/sodium alginate/polyacrylamide nanocomposite hydrogel with improved dye adsorption capacity[J]. Journal of Materials Chemistry A, 2013, 1(25):7433-7443.
    Zinadini S, A A Zinatizadeh, M Rahimi, et al. Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates[J]. Journal of Membrane Science, 2014, 453:292-301.
    Lindfors T, Z A Boeva, R M Latonen. Electrochemical synthesis of poly (3, 4-ethylenedioxythiophene) in aqueous dispersion of high porosity reduced graphene oxide[J]. RSC advances, 2014, 4(48):25279-25286.
    Xia C, Y Li, T Fei, et al. Facile one-pot synthesis of superhydrophobic reduced graphene oxide-coated polyurethane sponge at the presence of ethanol for oil-water separation[J]. Chemical Engineering Journal, 2018, 345:648-658.
    Hao G P, G Mondin, Z Zheng, et al. Unusual ultra-hydrophilic, porous carbon cuboids for atmospheric-water capture[J]. Angewandte Chemie International Edition, 2015, 54(6):1941-1945.
    Hao G P, Q Zhang, M Sin, et al. Design of hierarchically porous carbons with interlinked hydrophilic and hydrophobic surface and their capacitive behavior[J]. Chemistry of Materials, 2016, 28(23):8715-8725.
    Guerrero-Contreras J, F Caballero-Briones. Graphene oxide powders with different oxidation degree, prepared by synthesis variations of the Hummers method[J]. Materials Chemistry and Physics, 2015, 153:209-220.
    Paulchamy B, G Arthi, B Lignesh. A simple approach to stepwise synthesis of graphene oxide nanomaterial[J]. J Nanomed Nanotechnol, 2015, 6(1):1.
    Romanos G, L Pastrana-Martínez, T Tsoufis, et al. A facile approach for the development of fine-tuned self-standing graphene oxide membranes and their gas and vapor separation performance[J]. Journal of Membrane Science, 2015, 493:734-747.
    Niemantsverdriet J W. Spectroscopy in catalysis:an introduction[Z]. 2007:John Wiley & Sons.
    Park M J, S Phuntsho, T He, et al. Graphene oxide incorporated polysulfone substrate for the fabrication of flat-sheet thin-film composite forward osmosis membranes[J]. Journal of Membrane Science, 2015, 493:496-507.
    Cui C, S Zhang. Synthesis, characterization and performance evaluation of the environmentally benign scale inhibitor IA/AMPS copolymer[J]. New Journal of Chemistry, 2019, 43:9472-9482.
    Ramazani S, M Karimi. Electrospinning of poly (ε-caprolactone) solutions containing graphene oxide:Effects of graphene oxide content and oxidation level[J]. Polymer Composites, 2016, 37(1):131-140.
    Tang Y P, D R Paul, T S Chung. Free-standing graphene oxide thin films assembled by a pressurized ultrafiltration method for dehydration of ethanol[J]. Journal of Membrane Science, 2014, 458:199-208.
    Liu H, H Wang, X Zhang. Facile fabrication of freestanding ultrathin reduced graphene oxide membranes for water purification[J]. Advanced Materials, 2015, 27(2):249-254.
    Qiang F, L L Hu, L X Gong, et al. Facile synthesis of super-hydrophobic, electrically conductive and mechanically flexible functionalized graphene nanoribbon/polyurethane sponge for efficient oil/water separation at static and dynamic states[J]. Chemical Engineering Journal, 2018, 334:2154-2166.
    Tabr F A, F Salehiravesh, H Adelnia, et al. High sensitivity ammonia detection using metal nanoparticles decorated on graphene macroporous frameworks/polyaniline hybrid[J]. Talanta, 2019, 197:457-464.
    Hu N, Z Yang, Y Wang, et al. Ultrafast and sensitive room temperature NH3 gas sensors based on chemically reduced graphene oxide[J]. Nanotechnology, 2013, 25(2):025502.
    Sun S, S Tang, X Chang, et al. A bifunctional melamine sponge decorated with silver-reduced graphene oxide nanocomposite for oil-water separation and antibacterial applications[J]. Applied Surface Science, 2019, 473:1049-1061.
    An X, H Ma, B Liu, et al. Graphene oxide reinforced polylactic acid/polyurethane antibacterial composites[J]. Journal of Nanomaterials, 2013, 2013(18):1-7.
    Jung K H, B Pourdeyhimi, X Zhang. Synthesis and characterization of polymer-filled nonwoven membranes[J]. Journal of Applied Polymer Science, 2011, 119(5):2568-2575.
    Jia T, S Shen, L Xiao, et al. Constructing multilayered membranes with layer-by-layer self-assembly technique based on graphene oxide for anhydrous proton exchange membranes[J]. European Polymer Journal, 2020, 122:109362.
  • 加载中
图(1)
计量
  • 文章访问数:  430
  • HTML全文浏览量:  141
  • PDF下载量:  92
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-02
  • 修回日期:  2020-03-13
  • 刊出日期:  2020-12-31

目录

    /

    返回文章
    返回