留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同氧化程度的沥青纤维预氧化与炭化行为

彭元硕 杨建校 石奎 郭建光 朱辉 李轩科

彭元硕, 杨建校, 石奎, 郭建光, 朱辉, 李轩科. 不同氧化程度的沥青纤维预氧化与炭化行为[J]. 新型炭材料, 2020, 35(6): 722-730. doi: 10.1016/S1872-5805(20)60515-7
引用本文: 彭元硕, 杨建校, 石奎, 郭建光, 朱辉, 李轩科. 不同氧化程度的沥青纤维预氧化与炭化行为[J]. 新型炭材料, 2020, 35(6): 722-730. doi: 10.1016/S1872-5805(20)60515-7
PENG Yuan-shuo, YANG Jian-xiao, SHI Kui, GUO Jian-guang, ZHU Hui, LI Xuan-ke. Effects of the degree of oxidation of pitch fibers on their stabilization and carbonization behaviors[J]. NEW CARBON MATERIALS, 2020, 35(6): 722-730. doi: 10.1016/S1872-5805(20)60515-7
Citation: PENG Yuan-shuo, YANG Jian-xiao, SHI Kui, GUO Jian-guang, ZHU Hui, LI Xuan-ke. Effects of the degree of oxidation of pitch fibers on their stabilization and carbonization behaviors[J]. NEW CARBON MATERIALS, 2020, 35(6): 722-730. doi: 10.1016/S1872-5805(20)60515-7

不同氧化程度的沥青纤维预氧化与炭化行为

doi: 10.1016/S1872-5805(20)60515-7
基金项目: 国家自然科学基金青年项目(51702094);湖南省自然科学青年基金项目(2017JJ3014);煤转化与新型炭材料湖北省重点实验室2019年度开放基金资助项目(WKD201908).
详细信息
    作者简介:

    彭元硕.E-mail:2317853120@qq.com

    通讯作者:

    杨建校,助理教授.E-mail:yangjianxiao@hnu.edu.cn

  • 中图分类号: TQ536.2

Effects of the degree of oxidation of pitch fibers on their stabilization and carbonization behaviors

Funds: National Natural Science Foundation for Young Scientists of China (51702094), Natural Science Foundation for Young Scientists of Hunan Province (2017JJ3014), Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials (WKD201908).
  • 摘要: 以各向同性沥青纤维(IPPF)和中间相沥青纤维(MPPF)为对象,系统研究了它们在不同升温速率和不同预氧化温度下的预氧化过程。通过元素分析,FT-IR,TG-MS和SEM等手段对预氧化纤维(SFs)和炭纤维(CFs)进行了详细的分析表征,探究了沥青纤维的氧化程度对CFs的结构和力学性能的影响规律。结果表明,慢的升温速率有利于沥青纤维的氧化交联,所得到的CFs具有更高的炭化收率和拉伸强度。同时,IPPF和MPPF在270℃进行预氧化时,所制备对应的CFs具有最高的结构性能。另外,SFs的FT-IR图所计算的R1700/R1600值与其对应CFs的炭化收率和拉伸强度存在着良好的映射关系,可以作为一个评估沥青纤维的氧化程度的有效因子。除此之外,氧化不充足的纤维(I-SFs)在炭化过程中释放大量的H2和CH4,造成所得到的CFs出现空心结构,显示低的拉伸强度,尤其I-IPCF较为明显;过度氧化的纤维(E-SFs)则释放大量的CO和CO2,导致其对应的CFs呈现裂缝结构,特别是E-MPCF。因此,纤维预氧化和炭化行为的深入解析与优化对于提升沥青基炭纤维的性能具有重大的意义。
  • Frank E, Steudle L M, Ingildeev D, et al. Carbon fibers:Precursor systems, processing, structure, and properties[J]. Angewandte Chemie International Edition, 2014, 53:5262-5298.
    FAN Zhen, Cao Min, YANG Wen-bin, et al. The evolution of microstructure and thermal conductivity of mesophase pitch-based carbon fibers with heat treatment temperature[J]. New Carbon Materials, 2019, 34(1):38-43.
    Liu J, Shimanoe H, Nakabayashi K, et al. Enhancing the oxidative stabilization of isotropic pitch precursors prepared through the co-carbonization of ethylene bottom oil and polyvinyl chloride[J]. Journal of Industrial and Engineering Chemistry, 2018, 67:358-364.
    SHI Jing-li, MA Chang. Preparation and characterization of spinnable mesophase pitches:A review[J]. New Carbon Materials, 2019, 34(3):211-219.
    Wang Y G, Chang Y C, Ishida S, et al. Stabilization and carbonization properties of mesocarbon microbeads (MCMB) prepared from a synthetic naphthalene isotropic pitch[J]. Carbon, 1999, 37:969-976.
    Lee T, Ooi C H, Othman R, et al. Activated carbon fiber-the hybrid of carbon fiber and activated carbon[J]. Reviews on Advanced Materials Science, 2014, 36:118-136.
    Rahaman M S A, Ismail A F, Mustafa A. A review of heat treatment on polyacrylonitrile fiber[J]. Polymer Degradation and Stability, 2007, 92:1421-1432.
    Drbohlav J, Stevenson W T K. The oxidative stabilization and carbonization of a synthetic mesophase pitch, part I:The oxidative stabilization process[J]. Carbon, 1995, 33:693-711.
    Zhu J, Park S W, Joh H I, et al. Preparation and characterization of isotropic pitch-based carbon fiber[J]. Carbon Letters, 2013, 14:94-98.
    Lim T H, Yeo S Y. Investigation of the degradation of pitch-based carbon fibers properties upon insufficient or excess thermal treatment[J]. Scientific Reports, 2017, 7:4733.
    Matsumoto T, Mochida I. Oxygen distribution in oxidatively stabilized mesophase pitch fiber[J]. Carbon, 1993, 31:143-147.
    Yoon S H, Korai Y, Mochida I. Assessment and optimization of the stabilization process of mesophase pitch fibers by thermal analyses[J]. Carbon, 1994, 32:281-287.
    Zhu J, Park S W, Joh H I, et al. Study on the stabilization of isotropic pitch based fibers[J]. Macromolecular Research, 2015, 23:79-85.
    Jang S Y, Ko S, Jeon Y P, et al. Evaluating the stabilization of isotropic pitch fibers for optimal tensile properties of carbon fibers[J]. Journal of Industrial and Engineering Chemistry, 2017, 45:316-322.
    Shi K, Yang J, Ye C, et al. A Comparison of ethylene-tar-derived isotropic pitches prepared by air blowing and nitrogen distillation methods and their carbon fibers[J]. Materials, 2019, 12:305.
    Shi K, Zhang X, Wu W, et al. Effect of the oxygen content and the functionality of spinnable pitches derived from ethylene tar by distillation on the mechanical properties of carbon fibers[J]. New Carbon Materials, 2019, 34:84-94.
    Régnier N, Fontaine S. Determination of the thermal degradation kinetic parameters of carbon fibre reinforced epoxy using TG[J]. Journal of Thermal Analysis and Calorimetry, 2001, 64:789-799.
    Yuan G, Jin Z, Zuo X, et al. Effect of carbonaceous precursors on the structure of mesophase pitches and their derived cokes[J]. Energy & fuels, 2018, 32(8):8329-8339.
    Liu D, Ouyang Q, Jiang X, et al. Thermal properties and thermal stabilization of lignosulfonate-acrylonitrile-itaconic acid terpolymer for preparation of carbon fiber[J]. Polymer degradation and stability, 2018, 150:57-66.
    Kil H S, Jang S Y, Ko S, et al. Effects of stabilization variables on mechanical properties of isotropic pitch based carbon fibers[J]. Journal of Industrial and Engineering Chemistry, 2018, 58:349-356.
    Kil H S, Oh K, Kim Y J, et al. Structural evolution of pitch fibers during low temperature carbonization[J]. Journal of Analytical and Applied Pyrolysis, 2018, 136:153-159.
  • 加载中
图(1)
计量
  • 文章访问数:  142
  • HTML全文浏览量:  34
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-07
  • 修回日期:  2019-10-11
  • 刊出日期:  2020-12-31

目录

    /

    返回文章
    返回