留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高性能电容器用富勒烯/石墨烯三维全碳杂化材料

程蕾 李幸娟 李静 邱汉迅 薛裕华 Kuznetsova-Iren Evgenyevna Vladimir Kolesov 陈成猛 杨俊和

程蕾, 李幸娟, 李静, 邱汉迅, 薛裕华, Kuznetsova-Iren Evgenyevna, Vladimir Kolesov, 陈成猛, 杨俊和. 高性能电容器用富勒烯/石墨烯三维全碳杂化材料[J]. 新型炭材料, 2020, 35(6): 684-695. doi: 10.1016/S1872-5805(20)60522-4
引用本文: 程蕾, 李幸娟, 李静, 邱汉迅, 薛裕华, Kuznetsova-Iren Evgenyevna, Vladimir Kolesov, 陈成猛, 杨俊和. 高性能电容器用富勒烯/石墨烯三维全碳杂化材料[J]. 新型炭材料, 2020, 35(6): 684-695. doi: 10.1016/S1872-5805(20)60522-4
CHENG Lei, LI Xing-juan, LI Jing, QIU Han-xun, XUE Yu-hua, Kuznetsova-Iren Evgenyevna, Vladimir Kolesov, CHEN Cheng-meng, YANG Jun-he. Construction of three-dimensional all-carbon C60/graphene hybrids and their use as electrodes for high performance supercapacitors[J]. NEW CARBON MATERIALS, 2020, 35(6): 684-695. doi: 10.1016/S1872-5805(20)60522-4
Citation: CHENG Lei, LI Xing-juan, LI Jing, QIU Han-xun, XUE Yu-hua, Kuznetsova-Iren Evgenyevna, Vladimir Kolesov, CHEN Cheng-meng, YANG Jun-he. Construction of three-dimensional all-carbon C60/graphene hybrids and their use as electrodes for high performance supercapacitors[J]. NEW CARBON MATERIALS, 2020, 35(6): 684-695. doi: 10.1016/S1872-5805(20)60522-4

高性能电容器用富勒烯/石墨烯三维全碳杂化材料

doi: 10.1016/S1872-5805(20)60522-4
基金项目: 上海市自然科学基金(18ZR1426300,17511101603);上海市教委创新重点项目(2019-01-07-00-07-E00015);俄罗斯基础研究基金(18-29-23042).
详细信息
    作者简介:

    程蕾,硕士研究生.E-mail:ryoma0401@126.com

    通讯作者:

    邱汉迅,副教授.E-mail:hxqiu@usst.edu.cn

  • 中图分类号: TB33

Construction of three-dimensional all-carbon C60/graphene hybrids and their use as electrodes for high performance supercapacitors

Funds: Science and Technology Commission of Shanghai Municipality (18ZR1426300,17511101603), Innovation Program of Shanghai Municipal Education Commission (2019-01-07-00-07-E00015) and Russian Foundation of Basic Research Grant (18-29-23042).
  • 摘要: 通过简单的水热过程将C60分子引入石墨烯片层,可控制备了具有三维多孔结构的全碳C60/石墨烯杂化材料,该材料作电极材料时电容性能得到明显提高。研究表明,C60分子和石墨烯骨架中的碳六元环之间的共轭相互作用有利于C60与石墨烯在高压水热条件下自组装形成三维多孔结构。C60分子的加入使杂化产物具有优化的多孔结构和更多的氧化还原活性位点,这赋予杂化产物优异的电化学性能。以浓度为6 mol/L KOH溶液作为电解质,当电流密度为1 A/g时,其比电容为332.3 F/g,与三维多孔结构石墨烯材料电极相比提高了54.5%。此外,作为完全由碳原子组成的复合电极材料,其表现出的电化学性能优于文献报道的类似碳基材料。这一研究表明全碳杂化电极材料在用于制造高性能超级电容器方面具有很强竞争力和广阔应用前景,为未来基于全碳电极的高性能储能器件的设计和制备提供了有价值参考。
  • González A, Goikolea E, Barrena J A, et al. Review on supercapacitors:Technologies and materials[J]. Renewable & Sustainable Energy Reviews, 2016, 58:1189-1206.
    Jiang H, Lee P S, Li C. 3D carbon based nanostructures for advanced supercapacitors[J]. Energy & Environmental Science, 2013, 6(1):41-53.
    Annamalai K P, Zheng X, Gao J, et al. Nanoporous ruthenium and manganese oxide nanoparticles/reduced graphene oxide for high-energy symmetric supercapacitors[J]. Carbon, 2019, 144:185-192.
    Jiao C, Zhang W, Su F, et al. Research progress on electrode materials and electrolytes for supercapacitors[J]. New Carbon Materials, 2017, 32(2):106-115.
    Farbod F, Mazloum-Ardakani M, Naderi H R, et al. Synthesis of a porous interconnected nitrogen-doped graphene aerogel matrix incorporated with ytterbium oxide nanoparticles and its application in superior symmetric supercapacitors[J]. Electrochimica Acta, 2019, 306:480-488.
    Qiu H X, Han X B, Qiu F L, et al. Facile route to covalently-jointed graphene/polyaniline composite and it's enhanced electrochemical performances for supercapacitors[J]. Applied Surface Science, 2016, 376:261-268.
    Yang W, Hou L Q, Xu X W, et al. Carbon nitride template-directed fabrication of nitrogen-rich porous graphene-like carbon for high performance supercapacitors[J]. Carbon, 2018, 130:325-332.
    Kovalska E, Kocabas C. Organic electrolytes for graphene-based supercapacitor:Liquid, gel or solid[J]. Materials Today Communications, 2016, 7:155-160
    Guo W, Yu C, Li S, et al. High-stacking-density, superior-roughness LDH bridged with vertically aligned graphene for high-performance asymmetric supercapacitors[J]. Small, 2017, 13(37):1288.
    Huang X, Qi X Y, Boey F, et al. Graphene-based composites[J]. Chemical Society Reviews, 2012, 41(2):666-686.
    Zhu Y W, Murali S, Cai W W, et al. Graphene and graphene oxide:synthesis, properties, and applications[J]. Advanced Materials, 2010, 22(46):3906-3924.
    Xie B H, Wang Y, Lai W H, et al. Laser-processed graphene based micro-supercapacitors for ultrathin, rollable, compact and designable energy storage components[J]. Nano Energy, 2016, 26:276-285.
    Su F Y, Xie L J, Sun G H, et al. Theoretical research progress on the use of graphene in different electrochemical processes[J]. Carbon, 2016, 110:521.
    Tan M, Zheng J, Li P, et al. Preparation and modification of high performance porous carbons from petroleum coke for use as supercapacitor electrodes[J]. New Carbon Materials, 2018, 31:343-351.
    Qi K, Hou R Z, Zaman S, et al. A Core/shell structured tubular graphene nanoflakes-coated polypyrrole hybrid for all-solid-state flexible supercapacitor[J]. Journal of Materials Chemistry A, 2018, 6(9):3913-3918.
    Chen L, Li D P, Chen L, et al. Core-shell structured carbon nanofibers yarn@polypyrrole@graphene for high performance all-solid-state fiber supercapacitors[J]. Carbon, 2018, 138:264-270.
    Jha P K, Gupta K, Debnath A K, et al. 3D mesoporous reduced graphene oxide with remarkable supercapacitive performance[J]. Carbon, 2019, 148:354-360.
    Yuan J J, Zhu J W, Bi H P, et al. Graphene-based 3D composite hydrogel by anchoring Co3O4 nanoparticles with enhanced electrochemical properties[J]. Physical Chemistry Chemical Physics, 2013, 15(31):12940-12945.
    Wei F, Zhang H F, He X J, et al. Synthesis of porous carbons from coal tar pitch for high-performance supercapacitors[J]. New Carbon Materials, 2019, 34(2):132-139.
    Zhang Q Q, Wang Y, Zhang B Q, et al. 3D superelastic graphene aerogel-nanosheet hybrid hierarchical nanostructures as high-performance supercapacitor electrodes[J]. Carbon, 2018, 127:449-458.
    Su X L, Fu L, Cheng M Y, et al. 3D nitrogen-doped graphene aerogel nanomesh:Facile synthesis and electrochemical properties as the electrode materials for supercapacitors[J]. Applied Surface Science, 2017, 426:924-932.
    Caliman C C, Mesquita A, Cipriano D F, et al. One-pot synthesis of amine-functionalized graphene oxide by microwave-assisted reactions:An outstanding alternative for supporting materials in supercapacitors[J]. RSC Advances, 2018, 8(11):6136-6145.
    Shrestha L K, Yamauchi Y, Hill J P, et al. Fullerene crystals with bimodal pore architectures[J]. Journal of American Chemical Society, 2013, 135:586-589.
    Shrestha L K, Ji Q M, Mori T, et al. Fullerene nanoarchitectonics:From zero to higher dimensions[J]. Chemistry-An Asian Journal, 2013, 8(8):1662-1679.
    Thirumalraj B, Palanisamy S, Chen S M, et al. Preparation of highly stable fullerene C60 decorated graphene oxide nanocomposite and its sensitive electrochemical detection of dopamine in rat brain and pharmaceutical samples[J]. Journal of Colloid & Interface Science, 2015, 462:375-381.
    Yang J, Heo M, Lee H J, et al. Reduced graphene oxide (rGO)-wrapped fullerene (C60) wires[J]. ASC Nano, 2011, 5(10):8365-8371.
    Hu Z, Li J, Huang Y D, Chen L, et al. Functionalized graphene/C60 nanohybrid for targeting photothermally enhanced photodynamic therapy[J]. RSC Advances, 2014, 5(1):654-664.
    Kim K, Lee T H, Santos E J, et al. Structural and electrical investigation of C60-graphene vertical heterostructures[J]. ACS Nano, 2015, 9(6):5922-5928.
    Zhang X Y, Huang Y, Wang Y, et al. Synthesis and characterization of a graphene-C60 hybrid material[J]. Carbon, 2009, 47(1):334-337.
    Mo M T, Zhao W J, Chen Z F, et al. Excellent tribological and anti-corrosion performance of polyurethane composite coatings reinforced with functionalized graphene and graphene oxide nanosheets[J]. RSC Advances, 2015, 5(70):56486-56497.
    Huh J H, Kim S H, Chu J H, et al. Enhancement of seawater corrosion resistance in copper using acetone-derived graphene coating[J]. Nanoscale, 2014, 6(8):4379-4386.
    Ma J, Guo Q, Gao H L, et al. Synthesis of C60/graphene composite as electrode in supercapacitors[J]. Fullerenes Nanotubes and Carbon Nanostructures, 2015, 23(6):477-482.
    Li H L, Dai S C, Miao J, et al. Enhanced thermal conductivity of graphene/polyimide hybrid film via a novel "molecular welding" strategy[J]. Carbon, 2018, 126:319-327.
    Qiu H X, Qiu F L, Han X B, et al. Microwave-irradiated preparation of reduced graphene oxide-Ni nanostructures and their enhanced performance for catalytic reduction of 4-nitrophenol[J]. Applied Surface Science, 2017, 407:509-517.
    Qiu H X, Han X B, Li J, et al. Microwave involved synthesis of graphene/polyaniline nanocomposite with superior electrochemical performance[J]. Journal of Nano Research, 2017, 46:212-224.
    Yang Z Z, Zheng Q B, Qiu H X, et al. A simple method for the reduction of graphene oxide by sodium borohydride with CaCl2 as a catalyst[J]. New Carbon Materials, 2015, 30(1):41-47.
    Gui D Y, Liu C L, Chen F Y, et al. Preparation of polyaniline/graphene oxide nanocomposite for the application of supercapacitor[J]. Applied Surface Science, 2014, 307:172-177.
    Wang Q, Yan J, Fan Z J. Carbon materials for high volumetric performance supercapacitors:Design, progress, challenges and opportunities[J]. Energy Environmental Science, 2016, 9(3):729-762.
    Yao L, Yang G Z, Han P, et al. Three-dimensional beehive-like hierarchical porous polyacrylonitrile-based carbons as a high performance supercapacitor electrodes[J]. Journal of Power Sources, 2016, 315:209-217.
    Hasdeo E H, Nugraha A R T, Dresselhaus M S, et al. Fermi energy dependence of first-and second-order Raman spectra in graphene:Kohn anomaly and quantum interference effect[J]. Physical Review B, 2016, 94(7):075104.
    Qiu H X, Shi Z J, Zhang S L, et al. Synthesis and Raman scattering study of double-walled carbon nanotube peapods[J]. Solid State Communications, 2006, 137(12):654-657.
    Stankovich S, Dikin D A, Piner R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon, 2007, 45(7):1558-1565.
    Spyrou K, Kang L, Diamanti E K, et al. A novel route towards high quality fullerene-pillared graphene[J]. Carbon, 2013, 61:313-320.
    You B, Jiang J, Fan S. Three-Dimensional Hierarchically Porous All-Carbon Foams for Supercapacitor[J]. ACS Applied Materials & Interfaces, 2014, 6(17):15302-15308.
    Wang C, Liu D, Chen S, et al. All-carbon ultrafast supercapacitor by integrating multidimensional nanocarbons[J]. Small, 2016, 12(41):5684-5691.
    Zhou W J, Zhou K, Liu X J, et al. Flexible wire-like all-carbon supercapacitors based on porous core-shell carbon fibers[J]. Journal of Materials Chemistry A, 2014, 2(20):7250-7255.
    Du W C, Qi S P, Zhou B, et al. A surfactant-free water-processable all-carbon composite and its application to supercapacitor[J]. Electrochim Acta, 2014, 146:353-358.
    Xu G H, Zheng C, Zhang Q, et al. Binder-free activated carbon/carbon nanotube paper electrodes for use in supercapacitors[J]. Nano Research, 2011, 4(9):870-881.
    Wu J F, Zhang Q E, Wang J J, et al. A self-assembly route to porous polyaniline/reduced graphene oxide composite materials with molecular-level uniformity for high-performance supercapacitors[J]. Energy & Environmental Science, 2018, 11(5):1280-1286.
    Haque E, Islam M M, Pourazadi E, et al. Nitrogen doped graphene via thermal treatment of composite solid precursors as a high performance supercapacitor[J]. RSC Advances, 2015, 5(39):30679-30686.
    Zhao Y F, Ran W, Xiong D B, et al. Synthesis of Sn-doped Mn3O4/C nanocomposites as supercapacitor electrodes with remarkable capacity retention[J]. Materials Letters, 2014, 118:80-83.
    Zhang J, Jiang J, Li H, et al. A high-performance asymmetric supercapacitor fabricated with graphene-based electrodes[J]. Energy& Environmental Science, 2011, 4(10):4009-4015.
    Li B, Dai F, Xiao Q F, et al. Nitrogen-doped activated carbon for a high energy hybrid supercapacitor[J]. Energy& Environmental Science, 2016, 9(1):102-106.
    You B, Wang L L, Yao L, et al. Three dimensional N-doped graphene-CNT networks for supercapacitor[J]. Chemical Communications, 2013, 49(44):5016-5018.
    Wu D, Wang T, Wang L, et al. Hydrothermal synthesis of nitrogen, sulfur co-doped graphene and its high performance in supercapacitor and oxygen reduction reaction[J]. Microporous and Mesoporous Materials, 2019, 290:109556.
    Pan Z H, Zhi H Z, Qiu Y C, et al. Achieving commercial-level mass loading in ternary-doped holey graphene hydrogel electrodes for ultrahigh energy density supercapacitors[J]. Nano Energy, 2018, 46:266-276.
  • 加载中
图(1)
计量
  • 文章访问数:  319
  • HTML全文浏览量:  125
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-26
  • 修回日期:  2020-11-11
  • 刊出日期:  2020-12-31

目录

    /

    返回文章
    返回