留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纤维与基体性能对炭纤维增强树脂基复合材料抗压强度的影响

李爱军 张军军 张方舟 李龙 朱世鹏 杨云华

李爱军, 张军军, 张方舟, 李龙, 朱世鹏, 杨云华. 纤维与基体性能对炭纤维增强树脂基复合材料抗压强度的影响[J]. 新型炭材料, 2020, 35(6): 752-761. doi: 10.1016/S1872-5805(20)60526-1
引用本文: 李爱军, 张军军, 张方舟, 李龙, 朱世鹏, 杨云华. 纤维与基体性能对炭纤维增强树脂基复合材料抗压强度的影响[J]. 新型炭材料, 2020, 35(6): 752-761. doi: 10.1016/S1872-5805(20)60526-1
LI Ai-jun, ZHANG Jun-jun, ZHANG Fang-zhou, LI Long, ZHU Shi-peng, YANG Yun-hua. Effects of fiber and matrix properties on the compressive strength of carbon fiber reinforced polymer composites[J]. NEW CARBON MATERIALS, 2020, 35(6): 752-761. doi: 10.1016/S1872-5805(20)60526-1
Citation: LI Ai-jun, ZHANG Jun-jun, ZHANG Fang-zhou, LI Long, ZHU Shi-peng, YANG Yun-hua. Effects of fiber and matrix properties on the compressive strength of carbon fiber reinforced polymer composites[J]. NEW CARBON MATERIALS, 2020, 35(6): 752-761. doi: 10.1016/S1872-5805(20)60526-1

纤维与基体性能对炭纤维增强树脂基复合材料抗压强度的影响

doi: 10.1016/S1872-5805(20)60526-1
基金项目: 国家自然科学基金(21676163);航空科学基金(2017ZFS6001);先进功能复合材料技术重点实验室基金(614290601011811).
详细信息
    作者简介:

    李爱军,教授.E-mail:aijun.li@shu.edu.cn

    通讯作者:

    张方舟,博士,讲师.E-mail:zhangfzh@shu.edu.cn

  • 中图分类号: TB332

Effects of fiber and matrix properties on the compressive strength of carbon fiber reinforced polymer composites

Funds: National Natural Science Foundation(21676163); Aviation Science Foundation(2017ZFS6001); Science and Technology on Advanced Functional Composites Laboratory Funding (614290601011811).
  • 摘要: 炭纤维增强树脂基复合材料(CFRP)的轴向压缩强度显著低于其拉伸强度,这阻碍了其更广泛的应用。CFRP的轴向压缩破坏机理复杂,而目前针对CFRP轴向压缩破坏的研究却较为有限。为了对CFRP轴向压缩破坏机制有更加深入且直观的理解,本文构建了一个二维的微观有限元模型。该模型能够完整揭示CFRP轴向压缩破坏过程,并预测纤维和基体各项性能对CFRP抗压强度的影响规律。结果证明,由纤维初始制造缺陷引起的剪切应力集中使得基体开始发生塑性屈服,并最终形成扭折带,材料结构失效。剪切应力在整个失效过程中扮演着重要角色。此外,本文系统研究了纤维和基体各项性能对CFRP的抗压强度的影响,这些性能包括纤维轴向弹性模量Ef1、纤维径向弹性模量Ef2、纤维剪切模量Gf12、基体弹性模量Em、基体比例极限σp、基体屈服强度σs和纤维初始制造缺陷程度。研究发现,性能的变化直接影响着缺陷区域剪切应力的集中状态,从而影响CFRP的抗压强度。研究结果显示,当Ef1Ef2Gf12Emσpσs提升10%,纤维初始缺陷程度降低10%时,CFRP的抗压强度分别提升了2.33%、0、0.39%、3.38%、1.17%、2.30%、2.52%左右。研究了CFRP抗压强度对各参数的敏感性,结果发现,Em对CFRP的抗压强度影响最大,纤维的初始制造缺陷程度和基体的塑性性能也是不可忽略的因素。
  • Budiansky B, Fleck N A. Compressive failure of fibre composites[J]. Journal of the Mechanics and Physics of Solids, 1993, 41(1):183-211.
    SHI Pei-luo, WANG Yue-you, GUO Hong-jun, et al. The thermal and mechanical properties of carbon fiber/flake graphite/cyanate ester composites[J]. New Carbon Materials, 2019, 34(1):110-114.
    Pimenta S, Gutkin R, Pinho S, et al. A micromechanical model for kink-band formation:Part I-Experimental study and numerical modelling[J]. Composites Science and Technology, 2009, 69(7-8):948-955.
    Gutkin R, Pinho S T, Robinson P, et al. Physical mechanisms associated with initiation and propagation of kink-bands; proceedings of the Proceedings of the 13th European conference on composite materials (ECCM13)[C], F, 2008.
    Vogler T, Kyriakides S. On the axial propagation of kink bands in fiber composites:Part I experiments[J]. International journal of solids and structures, 1999, 36(4):557-574.
    Vogler T, Kyriakides S. On the initiation and growth of kink bands in fiber composites:Part I. experiments[J]. International journal of solids and structures, 2001, 38(15):2639-2651.
    Moran P, Liu X, Shin C. Kink band formation and band broadening in fiber composites under compressive loading[J]. Acta Metallurgica et Materialia, 1995, 43(8):2943-2958.
    Pimenta S, Gutkin R, Pinho S T, et al. A micromechanical model for kink-band formation:Part II-Analytical modelling[J]. Composites Science and Technology, 2009, 69(7-8):956-964.
    Rosen W. Mechanics of Composite Strengthening[J]. Fiber Comopsite Materials, 1964, 72.
    Argon A S. Fracture of composites[J]. Treatise on materials science and technology, 2013, 1:79-114.
    Budiansky B, Fleck A. Compressive kinking of fiber composites:a topical review[J]. Appl Mech Rev, 1994, 47(6):S246-S270.
    Basu S, Waas A, Ambur D. A macroscopic model for kink banding instabilities in fiber composites[J]. Journal of Mechanics of Materials and Structures, 2006, 1(6):979-1000.
    Bishare M, Rolfes R, Allix O. Revealing complex aspects of compressive failure of polymer composites-Part I:Fiber kinking at microscale[J]. Composite Structures, 2017, 169:105-115.
    Bishara M, Vogler M, Rplfes R. Revealing complex aspects of compressive failure of polymer composites-Part II:Failure interactions in multidirectional laminates and validation[J]. Composite Structures, 2017, 169:116-128.
    Vogler T, Hsu S Y, Kyriakides S. On the initiation and growth of kink bands in fiber composites. Part II:Analysis[J]. International Journal of Solids and Structures, 2001, 38(15):2653-2682.
    Yerramalli C S, Waas A M. The effect of fiber diameter on the compressive strength of composites-A 3D finite element-based study[J]. Computer Modeling in Engineering and Sciences, 2004, 6:1-16.
    Zhou L, Zhao L, Liu F, et al. A micromechanical model for axial compressive failure in unidirectional fiber reinforced composite[J]. Results in Physics, 2018, 10:841-848.
    LI Y Y, Zhang F, Zhu S, et al. Investigation on improving the Compressive Strength of the Unidirectional Carbon Fiber Reinforced Polymer Composite; Twenty-second international conference on composite material (ICCM22), 2019[C].
    Miyagawa H, Sato C, Mase T, et al. Transverse elastic modulus of carbon fibers measured by Raman spectroscopy[J]. Materials Science and Engineering:A, 2005, 412(1-2):88-92.
    Miyagawa H, Mask T, Sato C, et al. Comparison of experimental and theoretical transverse elastic modulus of carbon fibers[J]. Carbon, 2006, 44(10):2002-2008.
    Standard A. D3410-03(2008). Compressive Properties of polymer matrix composite materials with unsupported gage section by shear loading,"[S]. ASTM International (W Conshohocken, Pa), 2008.
  • 加载中
图(1)
计量
  • 文章访问数:  133
  • HTML全文浏览量:  28
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-12
  • 修回日期:  2020-03-02
  • 刊出日期:  2020-12-31

目录

    /

    返回文章
    返回