留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Recent advances in multilevel nickel-nitrogen-carbon catalysts for CO2 electroreduction to CO

ZHANG Ya-fang YU Chang TAN Xin-yi CUI Song LI Wen-bin QIU Jie-shan

张亚方, 于畅, 谭新义, 崔崧, 李文斌, 邱介山. 多尺度镍-氮-碳催化剂在电还原CO2生成CO中的研究进展[J]. 新型炭材料, 2021, 36(1): 19-33. doi: 10.1016/S1872-5805(21)60002-1
引用本文: 张亚方, 于畅, 谭新义, 崔崧, 李文斌, 邱介山. 多尺度镍-氮-碳催化剂在电还原CO2生成CO中的研究进展[J]. 新型炭材料, 2021, 36(1): 19-33. doi: 10.1016/S1872-5805(21)60002-1
ZHANG Ya-fang, YU Chang, TAN Xin-yi, CUI Song, LI Wen-bin, QIU Jie-shan. Recent advances in multilevel nickel-nitrogen-carbon catalysts for CO2 electroreduction to CO[J]. NEW CARBOM MATERIALS, 2021, 36(1): 19-33. doi: 10.1016/S1872-5805(21)60002-1
Citation: ZHANG Ya-fang, YU Chang, TAN Xin-yi, CUI Song, LI Wen-bin, QIU Jie-shan. Recent advances in multilevel nickel-nitrogen-carbon catalysts for CO2 electroreduction to CO[J]. NEW CARBOM MATERIALS, 2021, 36(1): 19-33. doi: 10.1016/S1872-5805(21)60002-1

多尺度镍-氮-碳催化剂在电还原CO2生成CO中的研究进展

doi: 10.1016/S1872-5805(21)60002-1
详细信息
  • 中图分类号: TB33

Recent advances in multilevel nickel-nitrogen-carbon catalysts for CO2 electroreduction to CO

Funds: The authors would like to offer special thanks to the Fundamental Research Funds for the Central Universities (DUT19LAB20); the Talent Program of Rejuvenation of the Liaoning (XLYC1807002); and the National Natural Science Foundation of China (51872035)
More Information
  • 摘要: 电化学CO2还原(ECR)作为一种清洁的CO2转化技术,倍受关注。开发高效的电催化剂是影响和决定ECR技术发展的关键。碳基材料具有来源丰富、比表面积高、孔隙率大、维数尺度多和活性位点可调等优点,是理想的ECR电催化剂之一。其中,金属镍-氮-碳(Ni-N-C)材料由于其活性位点丰富、选择性高等特点,在ECR生成CO的过程中展现出巨大的优势和应用潜力。本文介绍了ECR反应的基本原理和主要性能参数,综述了近年来国内外有关多尺度Ni-N-C催化剂在ECR反应生成CO中的研究进展。详细介绍了Ni-N-C催化剂碳骨架/基底的种类,主要包括小尺度碳质材料、一维(1D)碳质材料、二维(2D)碳质材料和纳米多孔碳质材料。讨论了Ni-N-C催化剂在电还原CO2生成CO应用过程中存在的问题。最后,展望了Ni-N-C催化剂在ECR体系中的挑战与应用前景。
  • Figure  1.  The number of papers on ECR in the past ten years. The data source is the search result of Web of Science, where the key words for the data of the blue bars and the orange bars are electrochemical CO2 reduction, electrochemical CO2 reduction to CO, respectively. The inset is the percentage of papers involving the electrocatalysts in ECR to CO.

    Figure  2.  Schematic mechanism for CO2 conversion to CO via ECR process (gray ball: catalyst, orange ball: active site, blue ball: C, red ball: O and yellow ball: H).

    Figure  3.  Carbon frameworks for multilevel Ni-N-C catalysts applied in ECR to produce CO.

    Figure  4.  (a) The synthesis process for Ni1-N/CNT, (b) the image of HAADF-STEM for the Ni1-N/CNT (The red circles indicated the Ni single atoms), (c) free energy diagrams of Ni-N5, Fe-N5, and Co-N5 configurations for ECR at 0 V (vs. RHE) and (d) Free energy diagrams of Ni-N5, Fe-N5, and Co-N5 configurations for HER[27]. Copyright 2020, Wiley-VCH.

    Figure  5.  (a) Schematic of ECR process over the Au-CDots-C3N4 catalyst[28] (Copyright 2018, American Chemical Society), (b) the process of syngas generation over the Co3O4-CDots-C3N4 catalyst[29] (Copyright 2017, Nature Publishing Group) and (c) diagram for the ECR reaction mechanism over the p-Ag/CQD composite[30] (Copyright 2019, The Royal Society of Chemistry).

    Figure  6.  (a) Illustration for the schematic on the synthesis of H-CPs, (b) good mechanical properties of H-CPs before and after press[33] (Copyright 2019, Elsevier), (c) structure diagram for Fe-N/CNT@GNR catalyst obtained by unzipping the CNTs[34] (Copyright 2020, American Chemical Society), (d) diagram for the synthesis process of PyNiPc/CNT and (e) comparison of UV–vis spectra for PyNiPc/CNT, CNTs and PyNiPc[35] (Copyright 2020, Elsevier).

    Figure  7.  (a) HAADF-STEM image of Ni–NG, where the red circles presented the Ni single atoms, (b) schematic illustration for MEA, (c) the model of three kinds of N species (gray ball: carbon atom, black ball: pyridinic-N, blue ball: pyrrolic-N, pink ball: graphitic-N and white ball: hydrogen atom)[41] (Copyright 2018, The Royal Society of Chemistry), (d) scanning electron microscope (SEM) and atomic force microscope (AFM) (inset) images of A-Ni-NSG[42] (Copyright 2018, Springer Nature), and (e) schematic diagram of the ion adsorption process on the surface of NG[44] (Copyright 2018, Wiley-VCH).

    Figure  8.  (a) The preparation process of the Ni-N-MEGO catalyst and (b) TEM image of the Ni-N-MEGO catalyst[50] (Copyright 2019, Elsevier).

    Figure  9.  (a) The synthesis of Ni SAs/N-C, (b) N2 adsorption/desorption isotherms for Ni SAs/N-C, Ni NPs/N-C, pyrolyzed ZIF-8 and ZIF-8, (c) CO2 adsorption isotherms for Ni SAs/N-C, Ni NPs/N-C, and pyrolyzed ZIF-8[56] (Copyright 2017, American Chemical Society), (d) schematic illustration on the synthesis of C-ZnxNiy ZIF-8, (e) the structure models of different Ni-N sites, (f) free energy diagrams for ECR derived from DFT calculation, (g) free energy diagrams for HER derived from DFT calculation[57] (Copyright 2018, The Royal Society of Chemistry), (h) schematic illustration on the synthesis of SE-Ni SAs@ PNC[58] (Copyright 2018, Wiley-VCH), (i) schematic of the synthesis of carbon catalysts using copper doped ZIF-8 as a precursor, (j) the adsorption capacity of CuZIF-derived catalysts for CO2 and (k) the result of charging j differences Δj with different scan rates over various electrocatalysts[59] (Copyright 2019, American Chemical Society).

    Table  1.   The standard electrode potentials for the main half reactions of ECR.

    ProductReaction equationEo(vs. RHE)
    COCO2+2H++2e→CO(g)+H2O–0.10 V
    Formic acidCO2+2H++2e→HCOOH(aq)–0.12 V
    HydrocarbonCO2+8H++8e→CH4(g)+2H2O0.17 V
    CO2+12H++12e→C2H4(g)+4H2O0.08 V
    AlcoholCO2+6H++6e→CH3OH(aq)+H2O0.03 V
    2CO2+12H++12e→C2H5OH(aq)+3H2O0.09 V
    下载: 导出CSV
  • [1] Senftle T P, Carter E A. The holy grail: Chemistry enabling an economically viable CO2 capture, utilization, and storage strategy[J]. Accounts of Chemical Research,2017,50(3):472-475. doi: 10.1021/acs.accounts.6b00479
    [2] Duan X, Xu J, Wei Z, et al. Metal-free carbon materials for CO2 electrochemical reduction[J]. Advanced Materials,2017,29(41):1701784. doi: 10.1002/adma.201701784
    [3] Zhu D D, Liu J L, Qiao S Z. Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide[J]. Advanced Materials,2016,28(18):3423-52. doi: 10.1002/adma.201504766
    [4] Agarwal A S, Zhai Y, Hill D, et al. The electrochemical reduction of carbon dioxide to formate/formic acid: Engineering and economic feasibility[J]. ChemSusChem,2011,4(9):1301-1310. doi: 10.1002/cssc.201100220
    [5] Nie X, Esopi M R, Janik M J, et al. Selectivity of CO2 reduction on copper electrodes: The role of the kinetics of elementary steps[J]. Angewandte Chemie - International Edition,2013,52(9):2459-2462. doi: 10.1002/anie.201208320
    [6] Ye K, Zhou Z, Shao J, et al. In situ reconstruction of a hierarchical Sn-Cu/SnOx core/shell catalyst for high-performance CO2 electroreduction[J]. Angewandte Chemie - International Edition,2020,59(12):4814-4821. doi: 10.1002/anie.201916538
    [7] Nielsen D U, Hu X, Daasbjerg K, et al. Chemically and electrochemically catalysed conversion of CO2 to CO with follow-up utilization to value-added chemicals[J]. Nature Catalysis,2018,1(4):244-254. doi: 10.1038/s41929-018-0051-3
    [8] Ilieva L, Ivanov I, Petrova P, et al. Effect of Y-doping on the catalytic properties of CuO/CeO2 catalysts for water-gas shift reaction[J]. International Journal of Hydrogen Energy,2020,45(49):26286-26299. doi: 10.1016/j.ijhydene.2019.10.190
    [9] Zhu W, Michalsky R, Metin O, et al. Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO[J]. Journal of the American Chemical Society,2013,135(45):16833-16836. doi: 10.1021/ja409445p
    [10] Kim C, Jeon H S, Eom T, et al. Achieving selective and efficient electrocatalytic activity for CO2 reduction using immobilized silver nanoparticles[J]. Journal of the American Chemical Society,2015,137(43):13844-13850. doi: 10.1021/jacs.5b06568
    [11] Wang X, Zhao Q, Yang B, et al. Emerging nanostructured carbon-based non-precious metal electrocatalysts for selective electrochemical CO2 reduction to CO[J]. Journal of Materials Chemistry A,2019,7(44):25191-25202. doi: 10.1039/C9TA09681G
    [12] Ju W, Bagger A, Hao G P, et al. Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2[J]. Nature Communications,2017,8(1):944. doi: 10.1038/s41467-017-01035-z
    [13] Jin S, Wu M, Gordon R G, et al. pH swing cycle for CO2 capture electrochemically driven through proton-coupled electron transfer[J]. Energy & Environmental Science,2020,13:3706-3722.
    [14] Nitopi S, Bertheussen E, Scott S B, et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte[J]. Chemical Reviews,2019,119(12):7610-7672. doi: 10.1021/acs.chemrev.8b00705
    [15] Kortlever R, Shen J, Schouten K J P, et al. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide[J]. Journal of Physical Chemistry Letters,2015,6(20):4073-4082. doi: 10.1021/acs.jpclett.5b01559
    [16] Li M, Wang H, Luo W, et al. Heterogeneous single-atom catalysts for electrochemical CO2 reduction reaction[J]. Advanced Materials,2020,32(34):e2001848. doi: 10.1002/adma.202001848
    [17] Liu H, Zhu Y, Ma J, et al. Recent advances in atomic‐level engineering of nanostructured catalysts for electrochemical CO2 reduction[J]. Advanced Functional Materials,2020,30(17):1910534. doi: 10.1002/adfm.201910534
    [18] Li D, Batchelor-McAuley C, Compton R G. Some thoughts about reporting the electrocatalytic performance of nanomaterials[J]. Applied Materials Today,2020,18:100404. doi: 10.1016/j.apmt.2019.05.011
    [19] Voiry D, Chhowalla M, Gogotsi Y, et al. Best practices for reporting electrocatalytic performance of nanomaterials[J]. ACS Nano,2018,12(10):9635-9638. doi: 10.1021/acsnano.8b07700
    [20] Tan X, Yu C, Ren Y, et al. Recent advance in innovative strategies for CO2 electroreduction reaction[J]. Energy & Environmental Science, 2021, doi: 10.1039/D0EE02981E.
    [21] Chen Y, Ji S, Chen C, et al. Single-atom catalysts: Synthetic strategies and electrochemical applications[J]. Joule,2018,2(7):1242-1264. doi: 10.1016/j.joule.2018.06.019
    [22] Wang Y, Yang P, Zheng L, et al. Carbon nanomaterials with sp or/and sp hybridization in energy conversion and storage applications: A review[J]. Energy Storage Materials,2020,26:349-370. doi: 10.1016/j.ensm.2019.11.006
    [23] Ye R, Xiang C, Lin J, et al. Coal as an abundant source of graphene quantum dots[J]. Nature Communications,2013,4:2943. doi: 10.1038/ncomms3943
    [24] Qin L, Liu W, Liu X, et al. A review of nano-carbon based molecularly imprinted polymer adsorbents and their adsorption mechanism[J]. New Carbon Materials,2020,35(5):459-485. doi: 10.1016/S1872-5805(20)60503-0
    [25] Demchenko A P, Dekaliuk M O. Novel fluorescent carbonic nanomaterials for sensing and imaging[J]. Methods and Applications in Fluorescence,2013,1(4):042001. doi: 10.1088/2050-6120/1/4/042001
    [26] Liu Y, Li X, Zhang Q, et al. A general route to prepare low-ruthenium-content bimetallic electrocatalysts for pH-universal hydrogen evolution reaction by using carbon quantum dots[J]. Angewandte Chemie - International Edition,2020,59(4):1718-1726. doi: 10.1002/anie.201913910
    [27] Jin S, Ni Y, Hao Z, et al. A universal graphene quantum dot-tethering design strategy to synthesize single-atom catalysts[J]. Angewandte Chemie - International Edition,2020,59(49):21885-21889. doi: 10.1002/anie.202008422
    [28] Zhao S, Tang Z, Guo S, et al. Enhanced activity for CO2 electroreduction on a highly active and stable ternary Au-CDots-C3N4 electrocatalyst[J]. ACS Catalysis,2018,8(1):188-197. doi: 10.1021/acscatal.7b01551
    [29] Guo S, Zhao S, Wu X, et al. A Co3O4-CDots-C3N4 three component electrocatalyst design concept for efficient and tunable CO2 reduction to syngas[J]. Nature Communications,2017,8(1):042001.
    [30] Gao J, Zhao S, Guo S, et al. Carbon quantum dot-covered porous Ag with enhanced activity for selective electroreduction of CO2 to CO[J]. Inorganic Chemistry Frontiers,2019,6(6):1453-1460. doi: 10.1039/C9QI00217K
    [31] Zhang W, Liu Y, Wu G. Surface modification of multiwall carbon nanotubes by electrochemical anodic oxidation[J]. New Carbon Materials,2020,35(2):155-164. doi: 10.1016/S1872-5805(20)60481-4
    [32] Cheng Y, Zhao S, Johannessen B, et al. Atomically dispersed transition metals on carbon nanotubes with ultrahigh loading for selective electrochemical carbon dioxide reduction[J]. Advanced Materials,2018,30(13):1706287. doi: 10.1002/adma.201706287
    [33] Zhao C, Wang Y, Li Z, et al. Solid-diffusion synthesis of single-atom catalysts directly from bulk metal for efficient CO2 reduction[J]. Joule,2019,3(2):584-594. doi: 10.1016/j.joule.2018.11.008
    [34] Pan F, Li B, Sarnello E, et al. Atomically dispersed iron-nitrogen sites on hierarchically mesoporous carbon nanotube and graphene nanoribbon networks for CO2 reduction[J]. ACS Nano,2020,14(5):5506-5516. doi: 10.1021/acsnano.9b09658
    [35] Ma D, Han S, Cao C, et al. Remarkable electrocatalytic CO2 reduction with ultrahigh CO/H2 ratio over single-molecularly immobilized pyrrolidinonyl nickel phthalocyanine[J]. Applied Catalysis B: Environmental,2020:264.
    [36] Ma T, Fan Q, Li X, et al. Graphene-based materials for electrochemical CO2 reduction[J]. Journal of CO2 Utilization,2019,30:168-182. doi: 10.1016/j.jcou.2019.02.001
    [37] Fan L, Yao W. Effects of vacancy defects on the mechanical properties of graphene/hexagonal BN superlattice nanoribbons[J]. New Carbon Materials,2020,35(2):165-175. doi: 10.1016/S1872-5805(20)60482-6
    [38] Navalon S, Dhakshinamoorthy A, Alvaro M, et al. Carbocatalysis by graphene-based materials[J]. Chemical Reviews,2014,114(12):6179-212. doi: 10.1021/cr4007347
    [39] Sun L. Structure and synthesis of graphene oxide[J]. Chinese Journal of Chemical Engineering,2019,27(10):2251-2260. doi: 10.1016/j.cjche.2019.05.003
    [40] Su P, Iwase K, Nakanishi S, et al. Nickel-nitrogen-modified graphene: An efficient electrocatalyst for the reduction of carbon dioxide to carbon monoxide[J]. Small,2016,12(44):6083-6089. doi: 10.1002/smll.201602158
    [41] Jiang K, Siahrostami S, Zheng T, et al. Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction[J]. Energy & Environmental Science,2018,11(4):893-903.
    [42] Yang H, Hung S, Liu S, et al. Atomically dispersed Ni(i) as the active site for electrochemical CO2 reduction[J]. Nature Energy,2018,3(2):140-147. doi: 10.1038/s41560-017-0078-8
    [43] Matsubara K, Fukahori Y, Inatomi T, et al. Monomeric three-coordinate N-heterocyclic carbene nickel(I) complexes: Synthesis, structures, and catalytic applications in cross-coupling reactions[J]. Organometallics,2016,35(19):3281-3287. doi: 10.1021/acs.organomet.6b00419
    [44] Bi W, Li X, You R, et al. Surface immobilization of transition metal ions on nitrogen-doped graphene realizing high-efficient and selective CO2 reduction[J]. Advanced Materials,2018,30(18):1706617. doi: 10.1002/adma.201706617
    [45] Zhu C, Han T Y J, Duoss E B, et al. Highly compressible 3D periodic graphene aerogel microlattices[J]. Nature Communications,2015,6(1):6962. doi: 10.1038/ncomms7962
    [46] Ito Y, Tanabe Y, Qiu H J, et al. High-quality three-dimensional nanoporous graphene[J]. Angewandte Chemie - International Edition,2014,53(19):4822-4826. doi: 10.1002/anie.201402662
    [47] Tang C, Zhang Q, Zhao M Q, et al. Resilient aligned carbon nanotube/graphene sandwiches for robust mechanical energy storage[J]. Nano Energy,2014,7:161-169. doi: 10.1016/j.nanoen.2014.05.005
    [48] Wang Y, Tao L, Xiao Z, et al. 3D carbon electrocatalysts in situ constructed by defect-rich nanosheets and polyhedrons from NaCl-sealed zeolitic imidazolate frameworks[J]. Advanced Functional Materials,2018,28(11):1705356. doi: 10.1002/adfm.201705356
    [49] Jorge A B, Jervis R, Periasamy A P, et al. 3D carbon materials for efficient oxygen and hydrogen electrocatalysis[J]. Advanced Energy Materials,2020,10:1902494.
    [50] Cheng Y, Zhao S, Li H, et al. Unsaturated edge-anchored Ni single atoms on porous microwave exfoliated graphene oxide for electrochemical CO2[J]. Applied Catalysis B: Environmental,2019,243:294-303. doi: 10.1016/j.apcatb.2018.10.046
    [51] Furukawa H, Cordova K E, O'Keeffe M, et al. The chemistry and applications of metal-organic frameworks[J]. Science,2013,341(6149):1230444. doi: 10.1126/science.1230444
    [52] Albo J, Vallejo D, Beobide G, et al. Copper-based metal-organic porous materials for CO2 electrocatalytic reduction to alcohols[J]. ChemSusChem,2017,10(6):1100-1109. doi: 10.1002/cssc.201600693
    [53] Duan X, Pan N, Sun C, et al. MOF-derived Co-MOF, O-doped carbon as trifunctional electrocatalysts to enable highly efficient Zn–air batteries and water-splitting[J]. Journal of Energy Chemistry,2020,56:290-298.
    [54] Tan X, Yu C, Zhao C, et al. Restructuring of Cu2O to Cu2O@Cu-Metal–Organic Frameworks for Selective Electrochemical Reduction of CO2[J]. ACS Applied Materials & Interfaces,2019,11(10):9904-9910.
    [55] Gascon J, Corma A, Kapteijn F, et al. Metal organic framework catalysis: quo vadis?[J]. ACS Catalysis,2013,4(2):361-378.
    [56] Zhao C, Dai X, Yao T, et al. Ionic exchange of metal-organic frameworks to access single nickel sites for efficient electroreduction of CO2[J]. Journal of the American Chemical Society,2017,139(24):8078-8081. doi: 10.1021/jacs.7b02736
    [57] Yan C, Li H, Ye Y, et al. Coordinatively unsaturated nickel-nitrogen sites towards selective and high-rate CO2 electroreduction[J]. Energy & Environmental Science,2018,11(5):1204-1210.
    [58] Yang J, Qiu Z, Zhao C, et al. In situ thermal atomization to convert supported nickel nanoparticles into surface-bound nickel single-atom catalysts[J]. Angewandte Chemie - International Edition,2018,57(43):14095-14100. doi: 10.1002/anie.201808049
    [59] Cui S, Yu C, Tan X, et al. Achieving multiple and tunable ratios of syngas to meet various downstream industrial processes[J]. ACS Sustainable Chemistry & Engineering,2020,8(8):3328-3335.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  46
  • HTML全文浏览量:  19
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-24
  • 修回日期:  2020-12-31
  • 网络出版日期:  2021-02-03
  • 刊出日期:  2021-02-01

目录

    /

    返回文章
    返回