留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Applications of nanocarbons in redox flow batteries

ZHANG Feng-jie ZHANG Hai-tao

张丰洁, 张海涛. 纳米炭在氧化还原液流电池中的应用[J]. 新型炭材料, 2021, 36(1): 82-92. doi: 10.1016/S1872-5805(21)60006-9
引用本文: 张丰洁, 张海涛. 纳米炭在氧化还原液流电池中的应用[J]. 新型炭材料, 2021, 36(1): 82-92. doi: 10.1016/S1872-5805(21)60006-9
ZHANG Feng-jie, ZHANG Hai-tao. Applications of nanocarbons in redox flow batteries[J]. NEW CARBOM MATERIALS, 2021, 36(1): 82-92. doi: 10.1016/S1872-5805(21)60006-9
Citation: ZHANG Feng-jie, ZHANG Hai-tao. Applications of nanocarbons in redox flow batteries[J]. NEW CARBOM MATERIALS, 2021, 36(1): 82-92. doi: 10.1016/S1872-5805(21)60006-9

纳米炭在氧化还原液流电池中的应用

doi: 10.1016/S1872-5805(21)60006-9
详细信息
  • 中图分类号: TQ127.1+1

Applications of nanocarbons in redox flow batteries

Funds: This work was financially supported by the National Key Research and Development Program of China (2019YFA0705601)
More Information
  • 摘要: 氧化还原液流电池(RFB)被认为是最高效的电网级大规模电化学储能技术,随着能源危机和环境污染的加剧,其引起广泛的关注。电荷传输性质是与储能装置的电化学性能有关的关键因素。通常通过调节材料形态和尺寸有效地减小离子的扩散距离,进而提高离子的扩散系数和电子的传递效率。纳米炭具有特殊的微结构和电子结构,并能呈现出众多奇异的物化特性,例如高离子电导、优异的导热性和出色的机械性能,其在电化学储能中起着不可或缺的作用。调控碳的微观结构是改善其电子和离子传输行为的有效策略。本文回顾了纳米炭在RFB中的功能,特别是着眼于电极(悬浮电极)和双极板(集电极)中使用的纳米炭材料的改性和设计,其可提高能量效率、功率密度和流动池的稳定性。希望对纳米炭材料在氧化还原液流电池中的应用进行更全面系统的介绍,可为高性能氧化还原液流电池的设计提供新的视角。
  • Figure  1.  Classification of common carbon materials: according to bonding (hybridization of carbon atom orbitals) and dimension. (i.e., the number of dimensions not limited to the nanometer scale)[13]. Reprinted with permission.

    Figure  2.  A schematic illustration of the structure of a RFB. Reprinted with permission.

    Figure  3.  Schematic diagram of carbon electrode optimization improvement in aqueous flow battery[20]. Reprinted with permission.

    Figure  4.  Schematic diagram of (a) N and O double-doped GF electrode synthesized by urea pyrolysis[25] and (b) the preparation procedure of SnO2/Sb modified carbon paper[27]. Reprinted with permission.

    Figure  5.  SEM images of (a) carbon aerogel modified graphite felt[22], (b) glucose-derived hydrothermal carbons[41], (c)3D nitrogen-doped mesoporous graphene functionalized carbon blankets[42] and (d) porous nano-sheet carbon from zeolite-type metal organic framework[43]. Reprinted with permission.

    Figure  6.  Schematic diagram of (a) the chemical reaction part in a typical VRFBs system cell and (b) the microstructure of the synthesized composite BPs[46]. Reprinted with permission.

    Figure  7.  Schematic illustration of the synthesis of CFP@NSC[55]. Reprinted with permission.

    Table  1.   Several carbon fiber electrodes reported.

    ElectrodeTreatment of carbon fiber electrodePerformanceCurrent density(mA cm−2)Ref.
    New double diameter carbon fiber electrodeIt combines the advantages of high permeability of large fiber electrode and large specific surface area of small fiber electrodeThe energy efficiency is 79.43%150[28]
    Electrospun carbon fiberElectrospun carbon fibers with different structural properties (including pore size and pore distribution) were prepared by changing the concentration of the precursorThe energy efficiency is 79%, electrolyte utilization rate is 74%300[44]
    Nanopore engineered
    carbon felt
    When copper oxide etching is used to form a nano-catalysis layer on the carbon fiber surface, an ultra-thin nano-porous catalytic layer is formed on the carbon fiber surfaceThe energy efficiency is 85.1%, and the 2000 cycle test remains stable320[45]
    下载: 导出CSV

    Table  2.   Biochar used as flow electrodes for flow batteries previously reported.

    Biomass sourceBatteries systemPerformanceCurrent density(mA cm−2)Ref.
    Mycobacterium cell wallVRFBsIt shows high stability under more than 1000 continuous cycles200[23]
    The twin cocoonVRFBsThe average discharge capacity is 83% and the energy efficiency is 20% higher100[19]
    Pomelo peelZinc bromide flow batteriesEnergy efficiency is up to 81.2%, and no degradation was observed in the 100 cycles100[48]
    Biomass kiwi fruitVRFBsThe average energy efficiency is 80%, showing excellent electrochemical activity and stability in charge and discharge tests150[21]
    Shoulder blade of grassVRFBsThe energy efficiency reaches 72.4%, and the corresponding discharge capacity has also increased by 11.1%50[49]
    下载: 导出CSV

    Table  3.   Some researches on suspended electrodes in SSFBs reported.

    Suspension systemResearch factorsRef.
    LiNi1/3Co1/3Mn1/3O2-based suspensionsConductive carbon black content[50]
    Li4Ti5O12-based organic suspensionsAmount of active substance in the suspension[9]
    Na2SO4-based suspensionsDispersion time and mixing methodology[51]
    LiPF6-based suspensionsRheological properties of carbon black suspension[52]
    Li4Ti5O12-based suspensionsThe type of carbon black, its concentration range and the flow rate range[53]
    下载: 导出CSV
  • [1] Sun Y S, Yang M, Shi C L, et al. Analysis of application status and development trend of energy storage[J]. High Voltage Engineering,2020,46:80-89.
    [2] Nam S, Lee D, Lee D G, et al. Nano carbon/fluoroelastomer composite bipolar plate for a vanadium redox flow battery (VRFB)[J]. Composite Structures,2017,159:220-227. doi: 10.1016/j.compstruct.2016.09.063
    [3] Hassenzahl W V. Superconductivity: An enabling technology for 21st century power systems[J]. Advanced Energy Analysis,2001,11:1447-1453.
    [4] Lund H, Mathiesen B V. Energy system analysis of 100% renewable energy systems—the case of denmark in years 2030 and 2050[J]. Energy,2009,34:524-531. doi: 10.1016/j.energy.2008.04.003
    [5] Chen H, Cong T N, Yang W, et al. Progress in electrical energy storage system: A critical review[J]. Progress in Natural Science,2009,19:291-312. doi: 10.1016/j.pnsc.2008.07.014
    [6] Skyllas-Kazacos M, Chakrabarti M H, Hajimolana S A, et al. Progress in flow battery research and development[J]. Journal of The Electrochemical Society,2011,158:55-79.
    [7] Weber A Z, Mench M M, Meyers J P, et al. Redox flow batteries: A review[J]. Journal of Applied Electrochemistry,2011,41:1137-1164. doi: 10.1007/s10800-011-0348-2
    [8] Wang W, Luo Q, Li B, et al. Recent progress in redox flow battery research and development[J]. Advanced Functional Materials,2013,23:970-986. doi: 10.1002/adfm.201200694
    [9] Madec L, Youssry M, Cerbelaud M, et al. Electronic vs ionic limitations to electrochemical performance in Li4Ti5O12-based organic suspensions for lithium-redox flow batteries[J]. Journal of The Electrochemical Society,2014,161:A693-A699. doi: 10.1149/2.035405jes
    [10] Hamelet S, Larcher D, Dupont L, et al. Silicon-based non aqueous anolyte for Li redox-flow batteries[J]. Journal of The Electrochemical Society,2013,160:A516-A520. doi: 10.1149/2.002304jes
    [11] Qi Z, Koenig G M. Review article: Flow battery systems with solid electroactive materials[J]. American Vacuum Society,2017,35:040801-040828.
    [12] Hatzell K B, Boota M, Gogotsi Y. Materials for suspension (semi-solid) electrodes for energy and water technologies[J]. Chemical Society Reviews,2015,44:8664-8687. doi: 10.1039/C5CS00279F
    [13] Gogotsi Y. Not just graphene: The wonderful world of carbon and related nanomaterials[J]. MRS Bulletin,2015,40:1110-1121.
    [14] Di Blasi A, Briguglio N, Di Blasi O, et al. Charge–discharge performance of carbon fiber-based electrodes in single cell and short stack for vanadium redox flow battery[J]. Applied Energy,2014,125:114-122. doi: 10.1016/j.apenergy.2014.03.043
    [15] Ponce de León C, Frías-Ferrer A, González-García J, et al. Redox flow cells for energy conversion[J]. Journal of Power Sources,2006,160:716-732. doi: 10.1016/j.jpowsour.2006.02.095
    [16] Wu Q, Lv Y, Lin L, et al. An improved thin-film electrode for vanadium redox flow batteries enabled by a dual layered structure[J]. Journal of Power Sources,2019,410-411:152-161. doi: 10.1016/j.jpowsour.2018.11.020
    [17] Li L, Kim S, Wang W, et al. A stable vanadium redox-flow battery with high energy density for large-scale energy storage[J]. Advanced Energy Materials,2011,1:394-400. doi: 10.1002/aenm.201100008
    [18] Gao J, Chen J, Yi B. Research and fabrication of semi-solid LiFePO4 flow batteries[J]. China Academic Journal Electronic,2018,42:1690-1693.
    [19] Wang R, Li Y. Twin-cocoon-derived self-standing nitrogen-oxygen-rich monolithic carbon material as the cost-effective electrode for redox flow batteries[J]. Journal of Power Sources,2019,421:139-146.
    [20] Wang R, Li Y. Carbon electrodes improving electrochemical activity and enhancing mass and charge transports in aqueous flow battery: Status and perspective[J]. Energy Storage Materials,2020,31:230-251. doi: 10.1016/j.ensm.2020.06.012
    [21] Cheng D, Tian M, Wang B, et al. One-step activation of high-graphitization N-doped porous biomass carbon as advanced catalyst for vanadium redox flow battery[J]. J Colloid Interface Sci,2020,572:216-226. doi: 10.1016/j.jcis.2020.03.069
    [22] Jiang F, He Z, Guo D, et al. Carbon aerogel modified graphite felt as advanced electrodes for vanadium redox flow batteries[J]. Journal of Power Sources,2019,440:227114-221120. doi: 10.1016/j.jpowsour.2019.227114
    [23] Deng Q, Tian Y, Ding P, et al. Porous lamellar carbon assembled from Bacillus mycoides as high-performance electrode materials for vanadium redox flow batteries[J]. Journal of Power Sources,2020,450:227633-227641. doi: 10.1016/j.jpowsour.2019.227633
    [24] Shah A, Zahid A, Subhan H, et al. Heteroatom-doped carbonaceous electrode materials for high performance energy storage devices[J]. Sustainable Energy & Fuels,2018,2:1398-1429.
    [25] Kim S C, Lim H, Kim H, et al. Nitrogen and oxygen dual-doping on carbon electrodes by urea thermolysis and its electrocatalytic significance for vanadium redox flow battery[J]. Electrochimica Acta,2020,348:136286-136298. doi: 10.1016/j.electacta.2020.136286
    [26] Aziz M A, Hossain S I, Shanmugam S. Hierarchical oxygen rich-carbon nanorods: Efficient and durable electrode for all-vanadium redox flow batteries[J]. Journal of Power Sources,2020,445:227329-227337. doi: 10.1016/j.jpowsour.2019.227329
    [27] Zhang R, Li K, Ren S, et al. Sb-doped SnO2 nanoparticle-modified carbon paper as a superior electrode for a vanadium redox flow battery[J]. Applied Surface Science,2020,526:146685-146695. doi: 10.1016/j.apsusc.2020.146685
    [28] Sun J, Jiang H R, Wu M C, et al. A novel electrode formed with electrospun nano- and micro-scale carbon fibers for aqueous redox flow batteries[J]. Journal of Power Sources,2020,470:28441-28449.
    [29] Jiang Y, Cheng G, Li Y, et al. Superior electrocatalytic performance of porous, graphitic, and oxygen-functionalized carbon nanofiber as bifunctional electrode for vanadium redox flow battery[J]. Applied Surface Science,2020,525:146453-146461. doi: 10.1016/j.apsusc.2020.146453
    [30] Busacca C, Blasi O D, Giacoppo G, et al. High performance electrospun nickel manganite on carbon nanofibers electrode for vanadium redox flow battery[J]. Electrochimica Acta,2020,355:136755-136763. doi: 10.1016/j.electacta.2020.136755
    [31] Zhang H M, Huang Y X, Ming H, et al. Recent advances in nanostructured carbon for sodium-ion batteries[J]. The Royal Society of Chemistry,2020,8:1604-1630.
    [32] Guo X F, Sun Y Z, Liu Q, et al. Technology progress and industrialization status of graphene in energy storage[J]. Carbon Techniques,2020,1:20-23.
    [33] Han P, Yue Y, Liu Z, et al. Graphene oxide nanosheets/multi-walled carbon nanotubes hybrid as an excellent electrocatalytic material towards VO2+/VO2+ redox couples for vanadium redox flow batteries[J]. Energy & Environmental Science,2011,4:4710-4717.
    [34] Moghim M H, Eqra R, Babaiee M, et al. Role of reduced graphene oxide as nano-electrocatalyst in carbon felt electrode of vanadium redox flow battery[J]. Journal of Electroanalytical Chemistry,2017,789:67-75. doi: 10.1016/j.jelechem.2017.02.031
    [35] Di Blasi O, Briguglio N, Busacca C, et al. Electrochemical investigation of thermically treated graphene oxides as electrode materials for vanadium redox flow battery[J]. Applied Energy,2015,147:74-81. doi: 10.1016/j.apenergy.2015.02.073
    [36] Chakrabarti B, Nir D, Yufit V, et al. Performance enhancement of reduced graphene oxide-modified carbon electrodes for vanadium redox-flow systems[J]. ChemElectroChem,2017,4:194-200. doi: 10.1002/celc.201600402
    [37] Ferrari A C, Bonaccorso F, Fal'ko V, et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems[J]. Nanoscale,2015,7:4598-4810. doi: 10.1039/C4NR01600A
    [38] Hu G J, Jing M H, Wang D W, et al. A gradient bi-functional graphene-based modified electrode for vanadium redox flow batteries[J]. Energy Storage Materials,2018,13:66-71. doi: 10.1016/j.ensm.2017.12.026
    [39] Park M, Jeon I Y, Ryu J, et al. Edge-halogenated graphene nanoplatelets with F, Cl, or Br as electrocatalysts for all-vanadium redox flow batteries[J]. Nano Energy,2016,26:233-240. doi: 10.1016/j.nanoen.2016.05.027
    [40] Bayeh A W, Kabtamu D M, Chang Y C, et al. Synergistic effects of a TiNb2O7–reduced graphene oxide nanocomposite electrocatalyst for high-performance all-vanadium redox flow batteries[J]. Journal of Materials Chemistry A,2018,6:13908-13917. doi: 10.1039/C8TA03408G
    [41] Qiu J, Huang B, Liu Y, et al. Glucose-derived hydrothermal carbons as energy storage booster for vanadium redox flow batteries[J]. Journal of Energy Chemistry,2020,45:31-39. doi: 10.1016/j.jechem.2019.09.030
    [42] Opar D O, Nankya R, Lee J, et al. Assessment of three-dimensional nitrogen-doped mesoporous graphene functionalized carbon felt electrodes for high-performance all vanadium redox flow batteries[J]. Applied Surface Science,2020,531:147391-147444. doi: 10.1016/j.apsusc.2020.147391
    [43] Wang C, Lai Q, Feng K, et al. From zeolite-type metal organic framework to porous nano-sheet carbon: High activity positive electrode material for bromine-based flow batteries[J]. Nano Energy,2018,44:240-247. doi: 10.1016/j.nanoen.2017.12.007
    [44] Zeng L, Sun J, Zhao T S, et al. Balancing the specific surface area and mass diffusion property of electrospun carbon fibers to enhance the cell performance of vanadium redox flow battery[J]. International Journal of Hydrogen Energy,2020,45:12565-12576. doi: 10.1016/j.ijhydene.2020.02.177
    [45] Zhou X, Zhang X, Lv Y, et al. Nano-catalytic layer engraved carbon felt via copper oxide etching for vanadium redox flow batteries[J]. Carbon,2019,153:674-681. doi: 10.1016/j.carbon.2019.07.072
    [46] Liao W, Jiang F, Zhang Y, et al. Highly-conductive composite bipolar plate based on ternary carbon materials and its performance in redox flow batteries[J]. Renewable Energy,2020,152:1310-1316. doi: 10.1016/j.renene.2020.01.155
    [47] Liu W J, Jiang H, Yu, H Q. Emerging applications of biochar-based materials for energy storage and conversion[J]. The Royal Society of Chemistry,2019,12:1751-1779.
    [48] Wu M C, Zhang R H, Liu K, et al. Mesoporous carbon derived from pomelo peel as a high-performance electrode material for zinc-bromine flow batteries[J]. Journal of Power Sources,2019,442:227255-227261. doi: 10.1016/j.jpowsour.2019.227255
    [49] Lv Y, Li Y, Han C, et al. Application of porous biomass carbon materials in vanadium redox flow battery[J]. J Colloid Interface Sci,2020,566:434-443. doi: 10.1016/j.jcis.2020.01.118
    [50] Biendicho, J J, Flox, C, Sanz, L et al. Static and dynamic studies on LiNi1/3Co1/3Mn1/3O2-based suspensions for semi-solid flow batteries[J]. ChemSusChem,2016,9:1938-1944. doi: 10.1002/cssc.201600285
    [51] Akuzum B, Agartan L, Locco J, et al. Effects of particle dispersion and slurry preparation protocol on electrochemical performance of capacitive flowable electrodes[J]. Journal of Applied Electrochemistry,2017,47:369-380. doi: 10.1007/s10800-017-1046-5
    [52] Narayanan A, Mugele F, Duits M H. Mechanical history dependence in carbon black suspensions for flow batteries: a rheo-impedance study[J]. Langmuir,2017,33:1629-1638. doi: 10.1021/acs.langmuir.6b04322
    [53] Youssry M, Madec L, Soudan P, et al. Non-aqueous carbon black suspensions for lithium-based redox flow batteries: rheology and simultaneous rheo-electrical behavior[J]. Phys Chem Chem Phys,2013,15:14476-14486. doi: 10.1039/c3cp51371h
    [54] Lacroix R, Biendicho J J, Mulder G, et al. Modelling the rheology and electrochemical performance of Li4Ti5O12 and LiNi1/3Co1/3Mn1/3O2 based suspensions for semi-solid flow batteries[J]. Electrochimica Acta,2019,304:146-157. doi: 10.1016/j.electacta.2019.02.107
    [55] Cheng Y, Guo Y, Zhang N, et al. In situ growing catalytic sites on 3D carbon fiber paper as self-standing bifunctional air electrodes for air-based flow batteries[J]. Nano Energy,2019,63:103897-103905. doi: 10.1016/j.nanoen.2019.103897
    [56] Chen H, Lai N C, Lu Y C. Silicon–carbon nanocomposite semi-solid negolyte and its application in redox flow batteries[J]. Chemistry of Materials,2017,29:7533-7542. doi: 10.1021/acs.chemmater.7b02561
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  55
  • HTML全文浏览量:  23
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-28
  • 修回日期:  2020-12-12
  • 网络出版日期:  2021-02-03
  • 刊出日期:  2021-02-01

目录

    /

    返回文章
    返回