留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Recent progress in the carbon-based frameworks for high specific capacity anodes/cathode in lithium/sodium ion batteries

LI Xu WANG Xiao-yi SUN Jie

李旭, 王晓一, 孙洁. 高比容量负极/正极材料炭载体在锂/钠离子电池研究进展[J]. 新型炭材料, 2021, 36(1): 106-116. doi: 10.1016/S1872-5805(21)60008-2
引用本文: 李旭, 王晓一, 孙洁. 高比容量负极/正极材料炭载体在锂/钠离子电池研究进展[J]. 新型炭材料, 2021, 36(1): 106-116. doi: 10.1016/S1872-5805(21)60008-2
LI Xu, WANG Xiao-yi, SUN Jie. Recent progress in the carbon-based frameworks for high specific capacity anodes/cathode in lithium/sodium ion batteries[J]. NEW CARBOM MATERIALS, 2021, 36(1): 106-116. doi: 10.1016/S1872-5805(21)60008-2
Citation: LI Xu, WANG Xiao-yi, SUN Jie. Recent progress in the carbon-based frameworks for high specific capacity anodes/cathode in lithium/sodium ion batteries[J]. NEW CARBOM MATERIALS, 2021, 36(1): 106-116. doi: 10.1016/S1872-5805(21)60008-2

高比容量负极/正极材料炭载体在锂/钠离子电池研究进展

doi: 10.1016/S1872-5805(21)60008-2
详细信息
  • 中图分类号: TM912

Recent progress in the carbon-based frameworks for high specific capacity anodes/cathode in lithium/sodium ion batteries

Funds: This work was supported by the National Natural Science Foundation of China (22005215), Hebei Province Innovation Ability Promotion Project (20544401D, 20312201D), Tianjin Science and Technology Project (S19SLSL013)
More Information
  • 摘要: 随着对清洁能源需求的不断增加,二次离子电池已成为研究热点,开发具有高比容量的负极/正极材料尤为重要。合金化反应机制的硅、磷、锗、锡负极和硫正极材料存在较高的体积膨胀率,其中磷和硫较差的导电性以及可溶性中间产物的穿梭效应限制了实际应用。沉积/溶解机制的金属负极枝晶问题使其不能单独作为负极材料使用。炭材料由于其来源广泛以及优异的导电性常作为高比容量负极/正极材料的载体。本文从炭载体的比表面积、孔/空结构,电子/离子电导率、界面修饰和表面化学修饰的角度出发,综述了其在硅、磷、锗、锡、金属锂、金属钠负极,以及硫正极中的研究进展。
  • Figure  1.  Theoretical specific capacity of silicon, phosphorus, germanium, tin for LIBs and SIBs.

    Figure  2.  The problems of alloying/dealloying mechanism anodes/cathodes and deposition/dissolution mechanism anodes with carbon frameworks.

    Figure  3.  (a) Schematic illustration of porous carbon matrix. Reproduced with permission[18]. Copyright 2019, American Chemical Society, (b) Schematic of Na/C anode fabrication process. Reproduced with permission[19]. Copyright 2018, Wiley and (c) Schematic diagrams of Li deposition within a ZnO@HPC composite. Reproduced with permission[20]. Copyright 2017, Elsevier.

    Figure  4.  (a) Schematic illustration of P@TBMC, Reproduced with permission[22]. Copyright 2018, Elsevier, (b) Schematic illustration of Sn@C, Reproduced with permission[23]. Copyright 2016, American Chemical Society, (c) Schematic illustration of Si@C, Reproduced with permission[24]. Copyright 2013, Wiley and (d) Schematic illustration of the formation of Sn/carbon nanosheet, Reproduced with permission[29]. Copyright 2020, Elsevier.

    Figure  5.  Schematic of the synthesis of G/CNT-S//G/CNT cathode. Reproduced with permission[33]. Copyright 2019, Elsevier.

    Figure  6.  Schematic diagram of the procedure to fabricate 3D-Ge/C. Reproduced with permission[35]. Copyright 2015, Royal Society of Chemistry.

    Figure  7.  (a) Fabrication of Ag/CF-Li composite electrode, Reproduced with permission[40]. Copyright 2018, Elsevier. (b) Illustration of self-smoothing behavior in the Li-NCF anode, Reproduced with permission[44]. Copyright 2019, Nature.

    Figure  8.  (a) Schematic structure of the binding conditions of N in a carbon lattice, Reproduced with permission[46]. Copyright 2015, Wiley, (b) The Na growth behavior on O-CNTs and Cu foil surfaces by DFT calculations, Reproduced with permission[53]. Copyright 2019, Wiley and (c) Schematic illustration of controllable deposition process and favorable SEI component formation for Li in F-RC scaffold. Reproduced with permission[58]. Copyright 2018, Elsevier.

  • [1] Yang G, Ilango P R, Wang S, et al. Carbon-based alloy-type composite anode materials toward sodium-ion batteries[J]. Small,2019,15(22):1900628-1900656. doi: 10.1002/smll.201900628
    [2] Cui Q, Zhong Y, Pan L, et al. Recent advances in designing high-capacity anode nanomaterials for Li-ion batteries and their atomic-scale storage mechanism studies[J]. Advanced Science,2018,5(7):1700902-1700923. doi: 10.1002/advs.201700902
    [3] Wang L, He X, Li J, et al. Nano-structured phosphorus composite as high-capacity anode materials for lithium batteries[J]. Angewandte Chemie International Edition,2012,124:9168. doi: 10.1002/anie.201204591
    [4] Shen C, Ko T, Chiu K, et al. Recycled silicon powder coated on carbon paper used as the anode of lithium ion batteries[J]. New Carbon Materials,2019,34(2):140-145. doi: 10.1016/S1872-5805(19)60007-7
    [5] Liu H, Qiao W, Zhan L, et al. In situ growth of a carbon nanofiber/Si composite and its application in Li-ion storage[J]. New Carbon Materials,2009,24(2):124-130. doi: 10.1016/S1872-5805(08)60042-6
    [6] Liu H, Cheng X, Zhang R, et al. Mesoporous graphene hosts for dendrite-free lithium metal anode in working rechargeable batteries[J]. Transactions of Tianjin University,2020,26(2):127-134. doi: 10.1007/s12209-020-00241-z
    [7] Ye C, Chao D, Shan J, et al. Unveiling the advances of 2D materials for Li/Na-S batteries experimentally and theoretically[J]. Matter,2020,2(2):323-344. doi: 10.1016/j.matt.2019.12.020
    [8] Li H, Zhao M, Jin B, et al. Mesoporous nitrogen-doped carbon nanospheres as sulfur matrix and a novel chelate-modified separator for high-performance room-temperature Na-S batteries[J]. Small,2020,16(29):1907464-1907473. doi: 10.1002/smll.201907464
    [9] Li Z, Guan B Y, Zhang J, et al. A Compact nanoconfined sulfur cathode for high-performance lithium-sulfur batteries[J]. Joule,2017,1(3):576-587. doi: 10.1016/j.joule.2017.06.003
    [10] Liu C, Wang Y, Sun J, et al. A review on applications of layered phosphorus in energy storage[J]. Transactions of Tianjin University,2020,26:104-126. doi: 10.1007/s12209-019-00230-x
    [11] Zhang C, Lin Z, Yang Z, et al. Hierarchically designed germanium microcubes with high initial coulombic efficiency toward highly reversible lithium storage[J]. Chemistry of Materials,2015,27(6):2189-2194. doi: 10.1021/acs.chemmater.5b00218
    [12] Liu S, Xu H, Bian X, et al. Nanoporous red phosphorus on reduced graphene oxide as superior anode for sodium-ion batteries[J]. ACS Nano,2018,12(7):7380-7387. doi: 10.1021/acsnano.8b04075
    [13] Yue Z, Gupta T, Wang F, et al. Utilizing a graphene matrix to overcome the intrinsic limitations of red phosphorus as an anode material in lithium-ion batteries[J]. Carbon,2018,127:588-595. doi: 10.1016/j.carbon.2017.11.043
    [14] Kong J, Yee W A, Wei Y, et al. Silicon nanoparticles encapsulated in hollow graphitized carbon nanofibers for lithium ion battery anodes[J]. Nanoscale,2013,5(7):2967-2973. doi: 10.1039/c3nr34024d
    [15] Li X, Dhanabalan A, Gu L, et al. Three-dimensional porous core-shell Sn@Carbon composite anodes for high-performance lithium-ion battery applications[J]. Advanced Energy Materials,2012,2(2):238-244. doi: 10.1002/aenm.201100380
    [16] Nam D H, Hong K S, Lim S J, et al. Electrochemical properties of electrodeposited Sn anodes for Na-Ion batteries[J]. The Journal of Physical Chemistry C,2014,118(35):20086-20093. doi: 10.1021/jp504055j
    [17] Wang Z, Shen J, Liu J, et al. Self-supported and flexible sulfur cathode enabled via synergistic confinement for high-energy-density lithium-sulfur batteries[J]. Advanced Materials,2019,31(33):1902228-1902238. doi: 10.1002/adma.201902228
    [18] Liu B, Zhang Q, Li L, et al. Encapsulating red phosphorus in ultralarge pore volume hierarchical porous carbon nanospheres for lithium/sodium-ion half/full batteries[J]. ACS Nano,2019,13(11):13513-13523. doi: 10.1021/acsnano.9b07428
    [19] Chi S S, Qi X G, Hu Y S., et al. 3D flexible carbon felt host for highly stable sodium metal anodes[J]. Advanced Energy Materials,2018,8(15):1702764-1702773. doi: 10.1002/aenm.201702764
    [20] Jin C, Sheng O, Luo J, et al. 3D lithium metal embedded within lithiophilic porous matrix for stable lithium metal batteries[J]. Nano Energy,2017,37:177-186. doi: 10.1016/j.nanoen.2017.05.015
    [21] Hu C, Kirk C, Cai Q, et al. A high-volumetric-capacity cathode based on interconnected close-packed N-doped porous carbon nanospheres for long-life lithium-sulfur batteries[J]. Advanced Energy Materials,2017,7(22):1701082-1701090. doi: 10.1002/aenm.201701082
    [22] Liu D, Huang X, Qu D, et al. Confined phosphorus in carbon nanotube-backboned mesoporous carbon as superior anode material for sodium/potassium-ion batteries[J]. Nano Energy,2018,52:1-10. doi: 10.1016/j.nanoen.2018.07.023
    [23] Li S, Wang Z, Liu J, et al. Yolk-shell Sn@C eggette-like nanostructure: application in lithium-ion and sodium-ion batteries[J]. ACS Applied Materials Interfaces,2016,8(30):19438-19445. doi: 10.1021/acsami.6b04736
    [24] Park Y, Choi N S, Park S, et al. Si-encapsulating hollow carbon electrodes via electroless etching for lithium-ion batteries[J]. Advanced Energy Materials,2013,3(2):206-212. doi: 10.1002/aenm.201200389
    [25] Yao S, Cui J, Huang J, et al. Rational assembly of hollow microporous carbon spheres as P hosts for long-life sodium-ion batteries[J]. Advanced Energy Materials,2018,8(7):1702267-1702279. doi: 10.1002/aenm.201702267
    [26] Chung S H, Chang C H, Manthiram A. A carbon-cotton cathode with ultrahigh-loading capability for statically and dynamically stable lithium-sulfur batteries[J]. ACS Nano,2016,10(11):10462-10470. doi: 10.1021/acsnano.6b06369
    [27] Niu S, Wu S, Lu W, et al. A one-step hard-templating method for the preparation of a hierarchical microporous-mesoporous carbon for lithium-sulfur batteries[J]. New Carbon Materials,2017,32(4):289-296. doi: 10.1016/S1872-5805(17)60123-9
    [28] Liu Y, Zhang N, Jiao L, et al. Tin nanodots encapsulated in porous nitrogen-doped carbon nanofibers as a free-standing anode for advanced sodium-ion batteries[J]. Advanced Materials,2015,27(42):6702-6707. doi: 10.1002/adma.201503015
    [29] Pan F, Cao Y, Xu M, et al. A layered-nanospace-confinement strategy for the synthesis of two-dimensional tin/carbon anode for Li-/Na-ion batteries[J]. Materials Letters,2020,273:127909-127912. doi: 10.1016/j.matlet.2020.127909
    [30] Pan X, Liu Y, Wang X, et al. Sulfidation of iron confined in nitrogen-doped carbon nanotubes to prepare novel anode materials for lithium ion batteries[J]. New Carbon Materials,2018,33(6):544-553. doi: 10.1016/S1872-5805(18)60356-7
    [31] Zhu Y, Wang Y, Gao C, et al. CoMoO4-N-doped carbon hybrid nanoparticles loaded on a petroleum asphalt-based porous carbon for lithium storage[J]. New Carbon Materials,2020,35(4):358-370. doi: 10.1016/S1872-5805(20)60494-2
    [32] Kim Y, Park Y, Choi A, et al. An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries[J]. Advanced Materials,2013,25(22):3045-3049. doi: 10.1002/adma.201204877
    [33] Shi H, Zhao X, Wu Z S, et al. Free-standing integrated cathode derived from 3D graphene/carbon nanotube aerogels serving as binder-free sulfur host and interlayer for ultrahigh volumetric-energy-density lithiumsulfur batteries[J]. Nano Energy,2019,60:743-751. doi: 10.1016/j.nanoen.2019.04.006
    [34] Qie L, Chen W M, Wang Z H, et al. Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability[J]. Advanced Materials,2012,24(15):2047-2050. doi: 10.1002/adma.201104634
    [35] Ngo D T, Le H T T, Kim C, et al. Mass-scalable synthesis of 3D porous germanium–carbon composite particles as an ultra-high rate anode for lithium ion batteries[J]. Energy & Environmental Science,2015,8(12):3577-3588.
    [36] Zhou J, Jiang Z, Niu S, et al. Self-standing hierarchical P/CNTs@rGO with unprecedented capacity and stability for lithium and sodium storage[J]. Chem,2018,4(2):372-385. doi: 10.1016/j.chempr.2018.01.006
    [37] Deng W, Zhu W, Zhou X, et al. Graphene nested porous carbon current collector for lithium metal anode with ultrahigh areal capacity[J]. Energy Storage Materials,2018,15:266-273. doi: 10.1016/j.ensm.2018.05.005
    [38] Kim S O, Manthiram A. High-performance red P-based P–TiP2–C nanocomposite anode for lithium-ion and sodium-ion storage[J]. Chemistry of Materials,2016,28(16):5935-5942. doi: 10.1021/acs.chemmater.6b02482
    [39] Han X, Zhang Z, Han M, et al. Fabrication of red phosphorus anode for fast-charging lithium-ion batteries based on TiN/TiP2-enhanced interfacial kinetics[J]. Energy Storage Materials,2020,26:147-156. doi: 10.1016/j.ensm.2019.12.044
    [40] Zhang R, Chen X, Shen X, et al. Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries[J]. Joule,2018,2(4):764-777. doi: 10.1016/j.joule.2018.02.001
    [41] Liu S, Xia X, Yao Z, et al. Straw-brick-like carbon fiber cloth/lithium composite electrode as an advanced lithium metal anode[J]. Small Methods,2018,2(8):1800035-1800042. doi: 10.1002/smtd.201800035
    [42] Chu C, Wang N, Li L, et al. Uniform nucleation of sodium in 3D carbon nanotube framework via oxygen doping for long-life and efficient Na metal anodes[J]. Energy Storage Materials,2019,23:137-143. doi: 10.1016/j.ensm.2019.05.020
    [43] Liu Y, Qin X, Zhang S, et al. Oxygen and nitrogen co-doped porous carbon granules enabling dendrite-free lithium metal anode[J]. Energy Storage Materials,2019,18:320-327. doi: 10.1016/j.ensm.2018.08.018
    [44] Niu C, Pan H, Xu W, et al. Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions[J]. Nature Nanotechnology,2019,14(6):594-601. doi: 10.1038/s41565-019-0427-9
    [45] Shin W H, Jeong H M, Kim B G, et al. Nitrogen-doped multiwall carbon nanotubes for lithium storage with extremely high capacity[J]. Nano Letters,2012,12(5):2283-2288. doi: 10.1021/nl3000908
    [46] Shen W, Wang C, Xu Q, et al. Nitrogen-doping-induced defects of a carbon coating layer facilitate Na-storage in electrode materials[J]. Advanced Energy Materials,2015,5(1):1400982-1400992. doi: 10.1002/aenm.201400982
    [47] Jiao X, Liu Y, Li T, et al. Crumpled nitrogen-doped graphene-wrapped phosphorus composite as a promising anode for lithium-ion batteries[J]. ACS Applied Materials Interfaces,2019,11(34):30858-30864. doi: 10.1021/acsami.9b08915
    [48] Guo Y, Niu P, Liu Y, et al. An autotransferable g-C3N4 Li+-modulating layer toward stable lithium anodes[J]. Advanced Materials,2019,31(27):1900342-1900351. doi: 10.1002/adma.201900342
    [49] Lu Z, Liang Q, Wang B, et al. Graphitic carbon nitride induced micro-electric field for dendrite-free lithium metal anodes[J]. Advanced Energy Materials,2019,9(7):1803186-1803193. doi: 10.1002/aenm.201803186
    [50] Zhang R, Chen X R, Chen X, et al. Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes[J]. Angewandte Chemie International Edition,2017,56(27):7764-7768. doi: 10.1002/anie.201702099
    [51] Liu L, Yin Y X, Li J Y, et al. Uniform lithium nucleation/growth induced by lightweight nitrogen-doped graphitic carbon foams for high-performance lithium metal anodes[J]. Advanced Materials,2018,30(10):1706216-1706223. doi: 10.1002/adma.201706216
    [52] Liu K, Li Z, Xie W, et al. Oxygen-rich carbon nanotube networks for enhanced lithium metal anode[J]. Energy Storage Materials,2018,15:308-314. doi: 10.1016/j.ensm.2018.05.025
    [53] Ye L, Liao M, Zhao T, et al. A sodiophilic interphase-mediated, dendrite-free anode with ultrahigh specific capacity for sodium-metal batteries[J]. Angewandte Chemie International Edition,2019,58(47):17054-17060. doi: 10.1002/anie.201910202
    [54] Peng H J, Hou T Z, Zhang Q, et al. Strongly coupled interfaces between a heterogeneous carbon host and a sulfur-containing guest for highly stable lithium-sulfur batteries: mechanistic insight into capacity degradation[J]. Advanced Materials Interfaces,2014,1(7):1400227-1400236. doi: 10.1002/admi.201400227
    [55] Zhong Y, Wang S, Sha Y, et al. Trapping sulfur in hierarchically porous, hollow indented carbon spheres: a high-performance cathode for lithium-sulfur batteries[J]. Journal of Materials Chemistry A,2016,4(24):9526-9535. doi: 10.1039/C6TA03187K
    [56] Zhang X Q, Cheng X B, Chen X, et al. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries[J]. Advanced Functional Materials,2017,27(10):1605989-1605996. doi: 10.1002/adfm.201605989
    [57] Luo J, Fang C C, Wu N L. High polarity poly (vinylidene difluoride) thin coating for dendrite-free and high-performance lithium metal anodes[J]. Advanced Energy Materials,2018,8(2):1701482-1701488. doi: 10.1002/aenm.201701482
    [58] Jin C, Sheng O, Zhang W, et al. Sustainable, inexpensive, naturally multi-functionalized biomass carbon for both Li metal anode and sulfur cathode[J]. Energy Storage Materials,2018,15:218-225. doi: 10.1016/j.ensm.2018.04.001
    [59] Cai J, Wu C, Zhu Y, et al. Sulfur impregnated N, P co-doped hierarchical porous carbon as cathode for high performance Li-S batteries[J]. Journal of Power Sources,2017,341:165-174. doi: 10.1016/j.jpowsour.2016.12.008
    [60] Liu J, Li W, Duan L, et al. A graphene-like oxygenated carbon nitride material for improved cycle-life lithium/sulfur batteries[J]. Nano Letters,2015,15(8):5137-5142. doi: 10.1021/acs.nanolett.5b01919
    [61] Zheng X, Li P, Cao Z, et al. Boosting the reversibility of sodium metal anode via heteroatom-doped hollow carbon fibers[J]. Small,2019,15(41):1902688-1902696. doi: 10.1002/smll.201902688
    [62] Pang Q, Tang J, Huang H, et al. A nitrogen and sulfur dual-doped carbon derived from polyrhodanine@cellulose for advanced lithium-sulfur batteries[J]. Advanced Materials,2015,27(39):6021-6028. doi: 10.1002/adma.201502467
    [63] Gao C, Feng J, Dai J, et al. Manipulation of interlayer spacing and surface charge of carbon nanosheets for robust lithium/sodium storage[J]. Carbon,2019,153:372-380. doi: 10.1016/j.carbon.2019.07.047
  • 加载中
图(8)
计量
  • 文章访问数:  118
  • HTML全文浏览量:  20
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-02
  • 修回日期:  2020-12-07
  • 网络出版日期:  2021-02-03
  • 刊出日期:  2021-02-01

目录

    /

    返回文章
    返回