留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A review of metal-organic framework-derived carbon electrode materials for capacitive deionization

WENG Jia-ze WANG Shi-yong ZHANG Pei-xin LI Chang-ping WANG Gang

翁嘉泽, 汪仕勇, 张培新, 李长平, 王刚. 基于金属有机骨架衍生炭应用于电容去离子电极材料的研究进展[J]. 新型炭材料, 2021, 36(1): 117-132. doi: 10.1016/S1872-5805(21)60009-4
引用本文: 翁嘉泽, 汪仕勇, 张培新, 李长平, 王刚. 基于金属有机骨架衍生炭应用于电容去离子电极材料的研究进展[J]. 新型炭材料, 2021, 36(1): 117-132. doi: 10.1016/S1872-5805(21)60009-4
WENG Jia-ze, WANG Shi-yong, ZHANG Pei-xin, LI Chang-ping, WANG Gang. A review of metal-organic framework-derived carbon electrode materials for capacitive deionization[J]. NEW CARBOM MATERIALS, 2021, 36(1): 117-132. doi: 10.1016/S1872-5805(21)60009-4
Citation: WENG Jia-ze, WANG Shi-yong, ZHANG Pei-xin, LI Chang-ping, WANG Gang. A review of metal-organic framework-derived carbon electrode materials for capacitive deionization[J]. NEW CARBOM MATERIALS, 2021, 36(1): 117-132. doi: 10.1016/S1872-5805(21)60009-4

基于金属有机骨架衍生炭应用于电容去离子电极材料的研究进展

doi: 10.1016/S1872-5805(21)60009-4
详细信息
  • 中图分类号: X703

A review of metal-organic framework-derived carbon electrode materials for capacitive deionization

Funds: The authors would like to offer special thanks to the National Natural Science Foundation of China (21878049); Dongguan Introduction Program of Leading Innovative and Entrepreneurial Talents; Research Start-up Funds of DGUT (GC300501-122)
More Information
  • 摘要: 电容去离子(CDI)技术因低能耗、低成本和低污染等优点被认为是新型的脱盐技术,其中的电极材料是CDI模块的核心部件。理想的电极材料应具有分层的多孔结构、良好的表面特性和优异的电化学性能等特点。金属有机骨架(MOFs)衍生炭因其可控的形貌结构、合适的孔径分布和优异的导电性,成为一种有发展前景的CDI电极材料。本文介绍了CDI技术和MOFs衍生炭的特点,综述了MOFs衍生炭、改性MOFs衍生炭、杂原子掺杂MOFs衍生炭和MOFs衍生炭复合材料在电容去离子电极材料中发展的最新前沿动态,并总结了MOFs衍生炭电极材料应用于CDI技术的优势及其当前面临的挑战。最后,预测了MOFs衍生炭在CDI电极材料的发展趋势。
  • Figure  1.  (a) Desalting principle of CDI unit[8], (b) Schematic of CDI, (c) ICDI, (d) FCDI, (e) MCDI and (f) HCDI[9]. Reprinted with permission.

    Figure  2.  The structure of metal-organic frameworks[29]. Reprinted with permission.

    Figure  3.  MOFs derived carbon electrode materials for CDI.

    Figure  4.  (a) Electrical conductivity curves and (b) adsorption capacities of PC and AC electrodes in a 500 mg·L–1 salt solution at 1.2 V[35], (c, d) FESEM images, (e) SEM image and (f) SAED image of PCPS-1200[36], (g) Cyclic voltammetry curves and (h) electrochemical impedance spectroscopy curves of ZIF-8 and PC electrodes in 0.5 mol·L–1 salt solution at 1 mV·s–1[37], (i) Synthesis illustration of sPCRs samples[39], (j) Synthesis illustration of ZICarbon, RMCarbon and ZFCarbon[40], (k) Desalting curves and (l) the corresponding current change curves of PC-ZnCo-3 at different voltages[41]. Reprinted with permission.

    Figure  5.  (a) SEM image, (b) TEM image and (c) HRTEM image of NHPC materials[43], (d) SEM image, (e) TEM image, (f) HRTEM image and (g) EDS image of MNPC materials[44], (h) Schematic illustration of the synthesis of HZCs and (i) a comparison of desalting capacities of HZCs with SZCs[45]. Reprinted with permission.

    Figure  6.  (a) Schematic representation and (b) cycling performance of CDI process in oxygenated saline water using 3D-FeNC tubes[50], (c) Water contact angles, (d) Nyquist plots and (e) cyclic voltammograms of ZIF-8@PZS-C and ZIF-8-C electrodes[51]. Reprinted with permission.

    Figure  7.  (a) Schematic illustration of the synthetic process, (b) Salt removal capacities and (c) cycle performance of PC/rGO composites[52], (d) ECs and charge efficiencies of e-CNFs, PCP and e-CNF-PCP in NaCl solution at 1.2 V with different initial concentrations[53] and (e) schematic illustration of the synthetic process of HCN samples[55]. Reprinted with permission.

    Table  1.   Preparation conditions and CDI performance of MOFs derived carbons.

    TypeSamplePreparation conditionVoltage (V)NaCl (mg·L−1)Capacity (mg·g−1)
    MOFs derived carbonPC-900[35]Carbonize MOF-5 at 900 oC1.25009.39
    PCPs-1200[36]Carbonize ZIF-8 at 1200 oC1.250013.86
    PC-900[37]Carbonize ZIF-8 at 900 oC1.250010.90
    MCs[38]Carbonize ZIF-8 at 1000 oC1.22504.80
    sPCRs[39]Carbonize MIL-88 at 900 oC1.2100016.20
    ZFCarbon[40]Carbonize ZnFumarate at 1000 oC1.230013.10
    PC-ZnCo-3[41]Carbonize at 1100 oC1.475045.62
    CoFe-CNTF[42]Carbonize at 800 oC1.250037.00
    Modified MOFs derived carbonNHPC[43]Carbonize ZIF-8 by adding CTAB1.450020.05
    MNPC[44]Carbonize MOF-5 at 900 oC1.250024.17
    HZCs[45]Carbonize by adding TA1.250015.31
    A-NCP[46]Carbonize by adding KOH1.210024.40
    Element-doped MOFs derived carbonBNPC[47]Carbonize by adding HF1.450016.63
    NCTs[48]Carbonize ZIF-81.2350056.90
    Au@NC800[49]Carbonize ZIF-8 at 800 oC1.26014.31
    3D-FeNC-5[50]Carbonize and etch1.230040.70
    ZIF-8@PZS-C[51]Carbonize ZIF-8 at 900 oC1.250022.19
    MOFs derived carbon compositesPC/rGO-20[52]Carbonize at 800 oC1.2100037.60
    e-CNF-PCP[53]Electrospinning, Carbonize at 1200 oC1.250016.98
    hCNTs/PCP[54]Carbonize at 1000 oC1.2100020.50
    HCN[55]PCVD, carbonize at 650 oC1.45007.08
    下载: 导出CSV
  • [1] Porada S, Zhao R, Van Der Wal A, et al. Review on the science and technology of water desalination by capacitive deionization[J]. Progress in Materials Science,2013,58(8):1388-1442. doi: 10.1016/j.pmatsci.2013.03.005
    [2] Oren Y. Capacitive deionization (CDI) for desalination and water treatment-past, present and future (a review)[J]. Desalination,2008,228(1/2/3):10-29.
    [3] Blair J W, Murphy G W. Electrochemical demineralization of water with porous electrodes of large surface area[J]. American Chemical Society,1960,27(27):206-223.
    [4] Arnold B B, Murphy G W. Studys on the eletrochemistry of carbon and chemically-modified carbon surfaces[J]. The Journal of Physical Chemistry,1961,65(1):135-138. doi: 10.1021/j100819a038
    [5] Johnson A M, Venolia A W, Wilbourne R G, et al. The electrosorb process for desalting water[M]. Washington: United States Department of the Interior, 1970: 31.
    [6] Farmer J C. Capacitive deionization of NaCl and NaNO3 solutions with carbon aerogel electrodes[J]. Journal of The Electrochemical Society,1996,143(1):159.
    [7] Van Limpt B, Van Der Wal A. Water and chemical savings in cooling towers by using membrane capacitive deionization[J]. Desalination,2014,342:148-155. doi: 10.1016/j.desal.2013.12.022
    [8] Li Z, Song B, Wu Z K, et al. 3D porous graphene with ultrahigh surface area for microscale capacitive deionization[J]. Nano Energy,2015,11:711-718. doi: 10.1016/j.nanoen.2014.11.018
    [9] Liu P Y, Yan T T, Shi L Y, et al. Graphene-based materials for capacitive deionization[J]. Journal of Materials Chemistry A,2017,5(27):13907-13943. doi: 10.1039/C7TA02653F
    [10] Huang K, Tang H, Liu D Y, et al. A review of capacitive deionization technology: Part 1. theoretical foundations[J]. Environmental Engineering,2016,34(S1):82-88.
    [11] Yin G J, Chen F M. Progress in capacitive deionization[J]. Technology of Water Treatment,2003,29(2):63-66.
    [12] Ahuja S. Advances in water purification techniques[M]. Amsterdam: Elsevier, 2019: 165-202.
    [13] Wu T T, Wang G, Zhan F, et al. Surface-treated carbon electrodes with modified potential of zero charge for capacitive deionization[J]. Water Research,2016,93:30-37. doi: 10.1016/j.watres.2016.02.004
    [14] Jeon S I, Park H R, Yeo J G, et al. Desalination via a new membrane capacitive deionization process utilizing flow-electrodes[J]. Energy & Environmental Science,2013,6(5):1471.
    [15] Lee J B, Park K K, Eum H M, et al. Desalination of a thermal power plant wastewater by membrane capacitive deionization[J]. Desalination,2006,196(1/2/3):125-134.
    [16] Wang S Y, Wang G, Wu T T, et al. Membrane-free hybrid capacitive deionization system based on redox reaction for high-efficiency NaCl removal[J]. Environmental Science & Technology,2019,53(11):6292-6301.
    [17] Huang K, Tang H, Liu D Y, et al. A review of capacitive deionization technology: Part 3. impact factors[J]. Environmental Engineering,2016,34(S1):101-106+137.
    [18] Wang G, Qian B Q, Dong Q, et al. Highly mesoporous activated carbon electrode for capacitive deionization[J]. Separation and Purification Technology,2013,103:216-221.
    [19] Li X R, Jiang Y H, Wang P Z, et al. Effect of the oxygen functional groups of activated carbon on its electrochemical performance for supercapacitors[J]. New Carbon Materials,2020,35(3):232-243. doi: 10.1016/S1872-5805(20)60487-5
    [20] Farmer J C, Fix D V, Mack G V, et al. The use of capacitive deionization with carbon aerogel electrodes to remove inorganic contaminants from water[R]. United States: Lawrence Livermore National Lab., 1995.
    [21] Dai K, Shi L Y, Fang J H, et al. NaCl adsorption in multi-walled carbon nanotubes[J]. Materials Letters,2005,59(16):1989-1992. doi: 10.1016/j.matlet.2005.01.042
    [22] Zhang W S, Liu Y T, Wu G P. Surface modification of multiwall carbon nanotubes by electrochemical anodic oxidation[J]. New Carbon Materials,2020,35(2):155-164. doi: 10.1016/S1872-5805(20)60481-4
    [23] Wang G, Pan C, Wang L P, et al. Activated carbon nanofiber webs made by electrospinning for capacitive deionization[J]. Electrochimica Acta,2012,69:65-70. doi: 10.1016/j.electacta.2012.02.066
    [24] Liu Y, Nie C Y, Pan L K, et al. Carbon aerogels electrode with reduced graphene oxide additive for capacitive deionization with enhanced performance[J]. Inorganic Chemistry Frontiers,2014,1(3):249. doi: 10.1039/c3qi00102d
    [25] Wang G, Zhang Y Q, Wang S Y, et al. Boron-nitride-carbon nanosheet/graphene composites generated by covalent cross-linking which have an excellent capacitive deionization performance[J]. New Carbon Materials,2020,35(4):384-393.
    [26] Zhao F, Yuan Z H, Zhong L B, et al. Review on electrode materials and capacitive deionization (CDI) technology for desalination[J]. Technology of Water Treatment,2016,42(5):38-44.
    [27] Yaghi O M, O’keeffe M, Ockwig N W, et al. Reticular synthesis and the design of new materials[J]. Nature,2003,423(6941):705-714. doi: 10.1038/nature01650
    [28] Liu W X, Yin R L, Xu X L, et al. Structural engineering of low-dimensional metal-organic frameworks: Synthesis, properties, and applications[J]. Advanced Science,2019,6(12):1802373. doi: 10.1002/advs.201802373
    [29] Dey C, Kundu T, Biswal B P, et al. Crystalline metal-organic frameworks (MOFs): Synthesis, structure and function[J]. Acta Crystallographica Section B, Structural Science, Crystal Engineering and Materials,2014,70(1):3-10. doi: 10.1107/S2052520613029557
    [30] Liu B, Shioyama H, Akita T, et al. Metal-organic framework as a template for porous carbon synthesis[J]. Journal of the American Chemical Society,2008,130(16):5390-5391. doi: 10.1021/ja7106146
    [31] Chaikittisilp W, Ariga K, Yamauchi Y. A new family of carbon materials: Synthesis of MOF-derived nanoporous carbons and their promising applications[J]. Journal of Materials Chemistry A,2013,1(1):14-19. doi: 10.1039/C2TA00278G
    [32] Cabana J, Monconduit L, Larcher D, et al. Beyond intercalation-based Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions[J]. Advanced Materials,2010,22(35
    [33] Liu Q, Liu X X, Shi C D, et al. A copper-based layered coordination polymer: Synthesis, magnetic properties and electrochemical performance in supercapacitors[J]. Dalton Transactions,2015,44(44):19175-19184. doi: 10.1039/C5DT02918J
    [34] Liao Y L, Hu J M, Zhu C X, et al. Synthesis and photovoltaic performance of novel polymeric metal complex sensitizer with benzodithiophene or carbazole derivative as donor in dye-sensitized solar cell[J]. Journal of Molecular Structure,2016,1108:467-474. doi: 10.1016/j.molstruc.2015.12.021
    [35] Chang L M, Li J R, Duan X Y, et al. Porous carbon derived from metal-organic framework (MOF) for capacitive deionization electrode[J]. Electrochimica Acta,2015,176:956-964. doi: 10.1016/j.electacta.2015.07.130
    [36] Liu Y, Xu X T, Wang M, et al. Metal-organic framework-derived porous carbon polyhedra for highly efficient capacitive deionization[J]. Chemical Communications,2015,51(60):12020-12023. doi: 10.1039/C5CC03999A
    [37] Duan X Y, Liu W, Chang L M. Porous carbon prepared by using ZIF-8 as precursor for capacitive deionization[J]. Journal of the Taiwan Institute of Chemical Engineers,2016,62:132-139. doi: 10.1016/j.jtice.2016.01.022
    [38] Gao T, Li H B, Zhou F, et al. Mesoporous carbon derived from ZIF-8 for high efficient electrosorption[J]. Desalination,2019,451:133-138. doi: 10.1016/j.desal.2017.06.021
    [39] Xu X T, Li J L, Wang M, et al. Shuttle-like porous carbon rods from carbonized metal-organic frameworks for high-performance capacitive deionization[J]. ChemElectroChem,2016,3(6):993-998. doi: 10.1002/celc.201600051
    [40] Wang M, Xu X T, Liu Y, et al. From metal-organic frameworks to porous carbons: A promising strategy to prepare high-performance electrode materials for capacitive deionization[J]. Carbon,2016,108:433-439. doi: 10.1016/j.carbon.2016.07.047
    [41] Ding M, Shi W H, Guo L, et al. Bimetallic metal–organic framework derived porous carbon nanostructures for high performance membrane capacitive desalination[J]. Journal of Materials Chemistry A,2017,5(13):6113-6121. doi: 10.1039/C7TA00339K
    [42] Shi W H, Xu X L, Ye C Z, et al. Bimetallic metal-organic framework-derived carbon nanotube-based frameworks for enhanced capacitive deionization and Zn-air battery[J]. Frontiers in Chemistry,2019,7:449. doi: 10.3389/fchem.2019.00449
    [43] Wang Z, Yan T T, Shi L Y, et al. In situ expanding pores of dodecahedron-like carbon frameworks derived from MOFs for enhanced capacitive deionization[J]. ACS Applied Materials & Interfaces,2017,9(17):15068-15078.
    [44] Zhang J, Yan T T, Fang J H, et al. Enhanced capacitive deionization of saline water using N-doped rod-like porous carbon derived from dual-ligand metal–organic frameworks[J]. Environmental Science: Nano,2020,7(3):926-937. doi: 10.1039/C9EN01216H
    [45] Shen J M, Li Y, Wang C H, et al. Hollow ZIFs-derived nanoporous carbon for efficient capacitive deionization[J]. Electrochimica Acta,2018,273:34-42. doi: 10.1016/j.electacta.2018.04.004
    [46] Kim J Y, Kim J H, Kim J H, et al. Hierarchically open-porous nitrogen-incorporated carbon polyhedrons derived from metal-organic frameworks for improved CDI performance[J]. Chemical Engineering Journal,2020,382:122996. doi: 10.1016/j.cej.2019.122996
    [47] Wang Z, Yan T T, Fang J H, et al. Nitrogen-doped porous carbon derived from a bimetallic metal-organic framework as highly efficient electrodes for flow-through deionization capacitors[J]. Journal of Materials Chemistry A,2016,4(28):10858-10868. doi: 10.1039/C6TA02420C
    [48] Xu X T, Yang T, Zhang Q W, et al. Ultrahigh capacitive deionization performance by 3D interconnected MOF-derived nitrogen-doped carbon tubes[J]. Chemical Engineering Journal,2020,390:124493. doi: 10.1016/j.cej.2020.124493
    [49] Li Y, Kim J, Wang J, et al. High performance capacitive deionization using modified ZIF-8-derived, N-doped porous carbon with improved conductivity[J]. Nanoscale,2018,10(31):14852-14859. doi: 10.1039/C8NR02288G
    [50] Xu X T, Tang J, Kaneti Y V, et al. Unprecedented capacitive deionization performance of interconnected iron–nitrogen-doped carbon tubes in oxygenated saline water[J]. Materials Horizons,2020,7(5):1404-1412. doi: 10.1039/C9MH01829H
    [51] Zhang J, Fang J H, Han J L, et al. N, P, S co-doped hollow carbon polyhedra derived from MOF-based core–shell nanocomposites for capacitive deionization[J]. Journal of Materials Chemistry A,2018,6(31):15245-15252. doi: 10.1039/C8TA04813D
    [52] Shi W H, Ye C Z, Xu X L, et al. High-performance membrane capacitive deionization based on metal-organic framework-derived hierarchical carbon structures[J]. ACS Omega,2018,3(8):8506-8513. doi: 10.1021/acsomega.8b01356
    [53] Liu Y, Ma J Q, Lu T, et al. Electrospun carbon nanofibers reinforced 3D porous carbon polyhedra network derived from metal-organic frameworks for capacitive deionization[J]. Scientific Reports,2016,6:32784. doi: 10.1038/srep32784
    [54] Xu X T, Wang M, Liu Y, et al. Metal–organic framework-engaged formation of a hierarchical hybrid with carbon nanotube inserted porous carbon polyhedra for highly efficient capacitive deionization[J]. Journal of Materials Chemistry A,2016,4(15):5467-5473. doi: 10.1039/C6TA00618C
    [55] Gao T, Zhou F, Ma W, et al. Metal-organic-framework derived carbon polyhedron and carbon nanotube hybrids as electrode for electrochemical supercapacitor and capacitive deionization[J]. Electrochimica Acta,2018,263:85-93. doi: 10.1016/j.electacta.2018.01.044
    [56] Niu R, Li H B, Ma Y L, et al. An insight into the improved capacitive deionization performance of activated carbon treated by sulfuric acid[J]. Electrochimica Acta,2015,176:755-762. doi: 10.1016/j.electacta.2015.07.012
    [57] Li Y, Chen N, Li Z, et al. Frontiers of carbon materials as capacitive deionization electrodes[J]. Dalton Transactions,2020,49(16):5006-5014. doi: 10.1039/D0DT00684J
    [58] Liu N L, Dutta S, Salunkhe R R, et al. ZIF-8 derived, nitrogen-doped porous electrodes of carbon polyhedron particles for high-performance electrosorption of salt ions[J]. Scientific Reports,2016,6:28847. doi: 10.1038/srep28847
    [59] El-deen A G, Boom R M, Kim H Y, et al. Flexible 3D nanoporous graphene for desalination and bio-decontamination of brackish water via asymmetric capacitive deionization[J]. ACS Applied Materials & Interfaces,2016,8(38):25313-25325.
    [60] Wang G, Dong Q, Wu T T, et al. Ultrasound-assisted preparation of electrospun carbon fiber/graphene electrodes for capacitive deionization: Importance and unique role of electrical conductivity[J]. Carbon,2016,103:311-317. doi: 10.1016/j.carbon.2016.03.025
    [61] Nie C Y, Pan L K, Liu Y, et al. Electrophoretic deposition of carbon nanotubes–polyacrylic acid composite film electrode for capacitive deionization[J]. Electrochimica Acta,2012,66:106-109. doi: 10.1016/j.electacta.2012.01.064
    [62] Liu Y, Nie C, Liu X, et al. Review on carbon-based composite materials for capacitive deionization[J]. RSC Advances,2015,5(20):15205-15225. doi: 10.1039/C4RA14447C
    [63] Che X, Wang S, Li C, et al. Inverted capacitive deionization with highly enhanced stability performance utilizing ionic liquid-functionalized carbon electrodes[J]. ACS Sustainable Chemistry & Engineering,2019,7(18):15715-15722.
    [64] Wang J, Kaskel S. KOH activation of carbon-based materials for energy storage[J]. Journal of Materials Chemistry,2012,22(45):23710. doi: 10.1039/c2jm34066f
    [65] He X, Zhao N, Qiu J, et al. Synthesis of hierarchical porous carbons for supercapacitors from coal tar pitch with nano-Fe2O3 as template and activation agent coupled with KOH activation[J]. Journal of Materials Chemistry A,2013,1(33):9440. doi: 10.1039/c3ta10501f
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  64
  • HTML全文浏览量:  24
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-21
  • 修回日期:  2020-09-09
  • 网络出版日期:  2021-02-03
  • 刊出日期:  2021-02-01

目录

    /

    返回文章
    返回