留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

N-doped layered porous carbon electrodes with high mass loadings for high-performance supercapacitors

SHENG Lizhi ZHAO Yunyun HOU Baoquan XIAO Zhenpeng JIANG Lili FAN Zhuangjun

盛利志, 赵云云, 侯宝权, 肖振鹏, 江丽丽, 范壮军. 高性能超级电容器用高载量N掺杂层状多孔炭电极[J]. 新型炭材料, 2021, 36(1): 179-188. doi: 10.1016/S1872-5805(21)60012-4
引用本文: 盛利志, 赵云云, 侯宝权, 肖振鹏, 江丽丽, 范壮军. 高性能超级电容器用高载量N掺杂层状多孔炭电极[J]. 新型炭材料, 2021, 36(1): 179-188. doi: 10.1016/S1872-5805(21)60012-4
SHENG Lizhi, ZHAO Yunyun, HOU Baoquan, XIAO Zhenpeng, JIANG Lili, FAN Zhuangjun. N-doped layered porous carbon electrodes with high mass loadings for high-performance supercapacitors[J]. NEW CARBOM MATERIALS, 2021, 36(1): 179-188. doi: 10.1016/S1872-5805(21)60012-4
Citation: SHENG Lizhi, ZHAO Yunyun, HOU Baoquan, XIAO Zhenpeng, JIANG Lili, FAN Zhuangjun. N-doped layered porous carbon electrodes with high mass loadings for high-performance supercapacitors[J]. NEW CARBOM MATERIALS, 2021, 36(1): 179-188. doi: 10.1016/S1872-5805(21)60012-4

高性能超级电容器用高载量N掺杂层状多孔炭电极

doi: 10.1016/S1872-5805(21)60012-4
详细信息
  • 中图分类号: TB32

N-doped layered porous carbon electrodes with high mass loadings for high-performance supercapacitors

Funds: The authors acknowledge financial support from the National Natural Science Foundation of China (51902006, 51702117, 51672055, 51972342), Taishan Scholar Project of Shandong Province (ts20190922), Key Basic Research Projects of Natural Science Foundation of Shandong province (ZR2019ZD51), Department of Science and Technology of Jilin Province (20190103034JH, 20180520014JH), and Young Elite Scientist Sponsorship Program by Jilin Province Association for Science and Technology (192009), Education Department of Jilin Province (JJKH2021KJ)
More Information
  • 摘要: 在保持快速充/放电特性的同时,提高超级电容器的能量密度将极大地扩展其应用领域。本文以野生箩藦壳为碳源、ZnCl2为活化剂、NH4Cl)为氮源,通过一步法制备了氮掺杂层状多孔炭(NPCM)作为高性能超级电容器电极材料。该NPCM材料具有高的电导率、较高的离子可接触比表面积和快速的离子传输通道,显示出高质量比容量(457 F/g)和面积比容量(47.8 μF/cm2)。在高负载(17.7 mg/cm2)下,材料仍显示出较高比容量(161 F/g)。此外,在1 mol/L Na2SO4电解液下,组装的NPCM//NPCM对称超级电容器可以在0.56 s内输出高能量密度(12.5 Wh/kg)和超高的功率密度(80 kW/kg)。
  • Figure  1.  Morphological characterization of NPCM: (a) SEM and (b-d) TEM images.

    Figure  2.  (a) N2 adsorption−desorption isotherms and (b) pore size distributions of samples.

    Figure  3.  (a) XRD and (b) Raman patterns of NPCM, PCM, and CM, (c) XPS spectra of NPCM, PCM, and CM (inset: possible locations for N and O incorporation into a carbon network), (d) atomic percentages of C, O and N and (e) high-resolution N 1s XPS spectrum of NPCM (Note: N-X, N-Q, N-5, N-6 denote oxidic, graphitic, pyrrolic and pyridinic nitrogen, respectively).

    Figure  4.  (a) CV curves of NPCM, PCM, and CM at a scan rate of 1 V s−1, (b) charge/discharge current as a function of the scan rate with a linear correlation coefficient of 0.994 for NPCM, (c) GCD curves of NPCM at various current densities, (d) GCD curves of NPCM, PCM, and CM at 50 A g−1, (e) gravimetric specific capacitances of NPCM, PCM, and CM, (f) specific capacitance versus square root of half-cycle time, (g) normalized area capacitances of NPCM compared with other heteroatom-doped carbons and activated carbons and (h) cycling stability of NPCM at a current density of 20 A g−1.

    Figure  5.  (a) Nyquist plots, (b) charge transfer resistance values (Rct, mΩ), (c) frequency responses and (d) relaxation time values (τ0, ms) of NPCM, PCM, and CM.

    Figure  6.  (a) CV and (b) GCD curves of the NPCM with different mass loadings from 1.0 to 17.7 mg cm−2 at 100 mV s−1 and 20 A g−1, respectively, (c) charge transfer resistance (Rct, Ω) and relaxation time constant (τ0, s) of the NPCM with different mass loadings, (d) CV curves of NPCM under 12.3 mg cm−2, (e) charge/discharge current as a function of scan rate with a linear correlation coefficient of 0.999 for the NPCM at 12.3 mg cm−2 and (f) specific capacitances of the NPCM with various mass loadings.

    Figure  7.  (a) CV curves of the NPCM//NPCM symmetric supercapacitor measured in various voltage windows at 50 mV s−1, (b) CV and (c) GCD curves of the NPCM//NPCM symmetric supercapacitor, (d) Ragone plot of the NPCM//NPCM symmetric supercapacitor and other symmetric supercapacitors previously reported in the literature and (e) cycling stability of the NPCM//NPCM symmetric supercapacitor at a current density of 20 A g−1 up to 20 000 cycles.

  • [1] Wei F, Zhang H F, He X J, et al. Synthesis of porous carbons from coal tar pitch for high-performance supercapacitors[J]. New Carbon Materials,2019,34(2):132-139. doi: 10.1016/S1872-5805(19)60006-5
    [2] Sun S, Han F, Wu X, et al. One-step synthesis of biomass derived O, N-codoped hierarchical porous carbon with high surface area for supercapacitors[J]. Chinese Chemical Letters,2020,31(9):2235-2238. doi: 10.1016/j.cclet.2019.11.023
    [3] Wei F, Bi H, Jiao S, et al. Interconnected graphene-like nanosheets for supercapacitors[J]. Acta Physico-Chimica Sinica,2020,36(2):1903043-1903040. doi: 10.3866/PKU.WHXB201903043
    [4] Lin Y, Chen Z, Yu C, et al. Heteroatom-doped sheet-like and hierarchical porous carbon based on natural biomass small molecule peach gum for high-performance supercapacitors[J]. ACS Sustainable Chemistry & Engineering,2019,7(3):3389-3403.
    [5] Li Z, Gadipelli S, Li H, et al. Tuning the interlayer spacing of graphene laminate films for efficient pore utilization towards compact capacitive energy storage[J]. Nature Energy,2020,5(2):160-168. doi: 10.1038/s41560-020-0560-6
    [6] Zhu J, Dong Y, Zhang S, et al. Application of carbon-/graphene quantum dots for supercapacitors[J]. Acta Physico-Chimica Sinica,2020,36(2):1903052-1903050. doi: 10.3866/PKU.WHXB201903052
    [7] Mao N, Wang H, Sui Y, et al. Extremely high-rate aqueous supercapacitor fabricated using doped carbon nanoflakes with large surface area and mesopores at near-commercial mass loading[J]. Nano Research,2017,10(5):1767-1783. doi: 10.1007/s12274-017-1486-6
    [8] Wang Y, Liu R, Tian Y, et al. Heteroatoms-doped hierarchical porous carbon derived from chitin for flexible all-solid-state symmetric supercapacitors[J]. Chemical Engineering Journal,2020,384:123263. doi: 10.1016/j.cej.2019.123263
    [9] Yao Y, Xiao Z, Liu P, et al. Facile synthesis of 2D ultrathin and ultrahigh specific surface hierarchical porous carbon nanosheets for advanced energy storage[J]. Carbon,2019,155:674-685. doi: 10.1016/j.carbon.2019.09.010
    [10] Sun X, Zhang X, Zhang H, et al. A comparative study of activated carbon-based symmetric supercapacitors in Li2SO4 and KOH aqueous electrolytes[J]. Journal of Solid State Electrochemistry,2012,16(8):2597-2603. doi: 10.1007/s10008-012-1678-7
    [11] Zhang Q, Han K, Li S, et al. Synthesis of garlic skin-derived 3D hierarchical porous carbon for high-performance supercapacitors[J]. Nanoscale,2018,10(5):2427-2437. doi: 10.1039/C7NR07158B
    [12] Du W, Zhang Z, Du L, et al. Designing synthesis of porous biomass carbon from wheat straw and the functionalizing application in flexible, all-solid-state supercapacitors[J]. Journal of Alloys and Compounds,2019,797:1031-1040. doi: 10.1016/j.jallcom.2019.05.207
    [13] Li M, Xiao H, Zhang T, et al. Activated carbon fiber derived from sisal with large specific surface area for high-performance supercapacitors[J]. ACS Sustainable Chemistry & Engineering,2019,7(5):4716-4723.
    [14] Song M, Zhou Y, Ren X, et al. Biowaste-based porous carbon for supercapacitor: The influence of preparation processes on structure and performance[J]. Journal of Colloid and Interface Science,2019,535:276-286. doi: 10.1016/j.jcis.2018.09.055
    [15] Wu F, Gao J, Zhai X, et al. Hierarchical porous carbon microrods derived from albizia flowers for high performance supercapacitors[J]. Carbon,2019,147:242-251. doi: 10.1016/j.carbon.2019.02.072
    [16] He J, Zhang D, Wang Y, et al. Biomass-derived porous carbons with tailored graphitization degree and pore size distribution for supercapacitors with ultra-high rate capability[J]. Applied Surface Science,2020,515:146020. doi: 10.1016/j.apsusc.2020.146020
    [17] Xu L, Li X, Li X. Large-sized and ultrathin biomass-derived hierarchically porous carbon nanosheets prepared by a facile way for high-performance supercapacitors[J]. Applied Surface Science,2020,526:146770. doi: 10.1016/j.apsusc.2020.146770
    [18] Zhang M, Yu X, Ma H, et al. Robust graphene composite films for multifunctional electrochemical capacitors with an ultrawide range of areal mass loading toward high-rate frequency response and ultrahigh specific capacitance[J]. Energy & Environmental Science,2018,11(3):559-565.
    [19] Xia Y, Mathis T S, Zhao M Q, et al. Thickness-independent capacitance of vertically aligned liquid-crystalline mxenes[J]. Nature,2018,557(7705):409-412. doi: 10.1038/s41586-018-0109-z
    [20] Huang T, Chu X, Cai S, et al. Tri-high designed graphene electrodes for long cycle-life supercapacitors with high mass loading[J]. Energy Storage Materials,2019,17:349-357. doi: 10.1016/j.ensm.2018.07.001
    [21] Sheng L, Chang J, Jiang L, et al. Multilayer-folded graphene ribbon film with ultrahigh areal capacitance and high rate performance for compressible supercapacitors[J]. Advanced Functional Materials,2018,28(21):1800597. doi: 10.1002/adfm.201800597
    [22] Yao B, Chandrasekaran S, Zhang J, et al. Efficient 3D printed pseudocapacitive electrodes with ultrahigh MnO2 loading[J]. Joule,2019,3(2):459-470. doi: 10.1016/j.joule.2018.09.020
    [23] Dong Y, Zhang S, Du X, et al. Boosting the electrical double-layer capacitance of graphene by self-doped defects through ball-milling[J]. Advanced Functional Materials,2019,29(24):1901127. doi: 10.1002/adfm.201901127
    [24] Zhao Y, Dong C, Sheng L, et al. Heteroatom-doped pillared porous carbon architectures with ultrafast electron and ion transport capabilities under high mass loadings for high-rate supercapacitors[J]. ACS Sustainable Chemistry & Engineering,2020,8(23):8664-8674.
    [25] Ye X W, Hu L B, Liu M C, et al. Improved oxygen reduction performance of a N, S co-doped graphene-like carbon prepared by a simple carbon bath method[J]. New Carbon Materials,2020,35(5):531-539. doi: 10.1016/S1872-5805(20)60506-6
    [26] Li X R, Jiang Y H, Wang P Z, et al. Effect of the oxygen functional groups of activated carbon on its electrochemical performance for supercapacitors[J]. New Carbon Materials,2020,35(3):232-243. doi: 10.1016/S1872-5805(20)60487-5
    [27] Wu M, Tong S, Jiang L, et al. Nitrogen-doped porous carbon composite with three-dimensional conducting network for high rate supercapacitors[J]. Journal of Alloys and Compounds,2020,844:156217. doi: 10.1016/j.jallcom.2020.156217
    [28] Xiao Z, Sheng L, Jiang L, et al. Nitrogen-doped graphene ribbons/MoS2 with ultrafast electron and ion transport for high-rate li-ion batteries[J]. Chemical Engineering Journal,2020,408:127269.
    [29] Zhang W, Xu C, Ma C, et al. Nitrogen-superdoped 3D graphene networks for high-performance supercapacitors[J]. Advanced Materials,2017,29(36):1701677. doi: 10.1002/adma.201701677
    [30] Liu J, Min S, Wang F, et al. Biomass-derived three-dimensional porous carbon membrane electrode for high-performance aqueous supercapacitors: An alternative of powdery carbon materials[J]. Journal of Power Sources,2020,466:228347. doi: 10.1016/j.jpowsour.2020.228347
    [31] Ardizzone S, Fregonara G, Trasatti S. “Inner” and “outer” active surface of RuO2 electrodes[J]. Electrochimica Acta,1990,35(1):263-267. doi: 10.1016/0013-4686(90)85068-X
    [32] Lin T, Chen I-W, Liu F, et al. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage[J]. Science,2015,350(6267):1508-1513. doi: 10.1126/science.aab3798
    [33] Sheng L, Jiang L, Wei T, et al. High volumetric energy density asymmetric supercapacitors based on well-balanced graphene and graphene-MnO2 electrodes with densely stacked architectures[J]. Small,2016,12(37):5217-5227. doi: 10.1002/smll.201601722
    [34] Guan L, Pan L, Peng T, et al. Synthesis of biomass-derived nitrogen-doped porous carbon nanosheests for high-performance supercapacitors[J]. ACS Sustainable Chemistry & Engineering,2019,7(9):8405-8412.
    [35] Li Z, Mi H, Bai Z, et al. Sustainable biowaste strategy to fabricate dual-doped carbon frameworks with remarkable performance for flexible solid-state supercapacitors[J]. Journal of Power Sources,2019,418:112-121. doi: 10.1016/j.jpowsour.2019.02.034
    [36] Yang S, Wang S, Liu X, et al. Biomass derived interconnected hierarchical micro-meso-macro- porous carbon with ultrahigh capacitance for supercapacitors[J]. Carbon,2019,147:540-549. doi: 10.1016/j.carbon.2019.03.023
    [37] Wei X, Wei J-S, Li Y, et al. Robust hierarchically interconnected porous carbons derived from discarded rhus typhina fruits for ultrahigh capacitive performance supercapacitors[J]. Journal of Power Sources,2019,414:13-23. doi: 10.1016/j.jpowsour.2018.12.064
    [38] Wan L, Wei W, Xie M, et al. Nitrogen, sulfur co-doped hierarchically porous carbon from rape pollen as high-performance supercapacitor electrode[J]. Electrochimica Acta,2019,311:72-82. doi: 10.1016/j.electacta.2019.04.106
  • 支撑信息20210001.pdf
  • 加载中
图(8)
计量
  • 文章访问数:  57
  • HTML全文浏览量:  18
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-03
  • 修回日期:  2021-01-11
  • 网络出版日期:  2021-02-03
  • 刊出日期:  2021-02-01

目录

    /

    返回文章
    返回