留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Preparation of gelatin-derived nitrogen-doped large pore volume porous carbons as sulfur hosts for lithium-sulfur batteries

SUN Chun-shui GUO De-cai SHAO Qin-jun CHEN Jian

孙春水, 郭德才, 邵钦君, 陈剑. 明胶基氮掺杂大孔容多孔炭的制备及在锂硫电池硫正极中的应用. 新型炭材料, 2021, 36(1): 198-208. doi: 10.1016/S1872-5805(21)60014-8
引用本文: 孙春水, 郭德才, 邵钦君, 陈剑. 明胶基氮掺杂大孔容多孔炭的制备及在锂硫电池硫正极中的应用. 新型炭材料, 2021, 36(1): 198-208. doi: 10.1016/S1872-5805(21)60014-8
SUN Chun-shui, GUO De-cai, SHAO Qin-jun, CHEN Jian. Preparation of gelatin-derived nitrogen-doped large pore volume porous carbons as sulfur hosts for lithium-sulfur batteries. New Carbon Mater., 2021, 36(1): 198-208. doi: 10.1016/S1872-5805(21)60014-8
Citation: SUN Chun-shui, GUO De-cai, SHAO Qin-jun, CHEN Jian. Preparation of gelatin-derived nitrogen-doped large pore volume porous carbons as sulfur hosts for lithium-sulfur batteries. New Carbon Mater., 2021, 36(1): 198-208. doi: 10.1016/S1872-5805(21)60014-8

明胶基氮掺杂大孔容多孔炭的制备及在锂硫电池硫正极中的应用

doi: 10.1016/S1872-5805(21)60014-8
详细信息
  • 中图分类号: TQ127.1+1

Preparation of gelatin-derived nitrogen-doped large pore volume porous carbons as sulfur hosts for lithium-sulfur batteries

Funds: This work was supported by the funding from the Strategy Priority Research Program of Chinese Academy of Science (XDA17020404), R&D Projects in Key Areas of Guangdong Province (2019B090908001), Science and Technology Innovation Foundation of Dalian (2018J11CY020), Defense Industrial Technology Development Program (JCKY2018130C107)
More Information
  • 摘要: 以富含氨基酸的明胶为前驱体、二氧化硅和冰为双模板,通过冷冻干燥法制备得到了高氮掺杂的大孔容多孔炭材料(GPC),将其作为正极硫载体。通过调整模板的配比,调控了GPC材料的孔道结构和孔容。多硫化锂吸附实验表明,氮掺杂的GPC材料对多硫化锂具有较强的化学吸附能力。电化学测试结果表明,氮掺杂有利于加快硫的还原反应动力学,从而抑制多硫化锂的穿梭效应。同时,GPC的孔容越大,硫正极的循环稳定性越优。所制具有7.00%的高氮含量和2.98 cm3 g−1孔容的GPC材料,不仅可以实现78.4%的高硫含量,而且还获得了较高的硫利用率。同时,所制GPC-S正极在0.1 C倍率下,初始放电比容量高达1 384 mAh g−1,循环100次后比容量仍达到608 mAh g−1
  • Figure  1.  SEM images of (a) GPC-2 (the inset is GPC-1, GPC-3 and GPC-4), (b) BP2000, (c) carbon-sulfur composite GPC-2-S and (d) BP2000-S.

    Figure  2.  TEM images of (a) GPC-1, (b) GPC-2, (c) GPC-3, (d) GPC-4, (e) BP2000 and (f) high resolution TEM image of GPC-2.

    Figure  3.  (a) Wide-angle XRD patterns, (b) Raman patterns of GPCs and BP2000, (c) N2 adsorption /desorption isotherms and (d) Pore size distributions of GPCs and BP2000 obtained using the BJH method calculated by the adsorption branch.

    Figure  4.  FTIR spectra of the GPCs.

    Figure  5.  The fitting results of the N 1s XPS spectra of GPCs.

    Figure  6.  (a) Cycle voltage profile of the GPCs-S and BP2000-S electrodes at a sweep rate of 0.1 mV s−1, (b) Charge/discharge potential profiles of the GPCs-S and BP2000-S electrodes, (c) Cycle capabilities of the GPCs-S and BP2000-S electrodes at 0.1 C and (d) Rate capabilities of the BP2000-S and GPC-2-S electrodes.

    Figure  7.  (a) The adsorption ability comparison of GPCs and BP2000 host materials with Li2S6 as the representative polysulfide and (b) Ultraviolet/visible absorption spectra of the original Li2S6 solution and Li2S6 solution after the addition of GPCs and BP2000.

    Table  1.   Synthesis conditions and structure parameters of GPCs.

    SamplesSynthesis conditionsStructure parameters
    H2O(mL)m${}_{{}_{({\rm{SiO}}_2)}} $/m(gelatin)SBET(m2 g−1)Vtotal(cm3 g−1)
    GPC-14018383.24
    GPC-216019912.98
    GPC-3402.511281.34
    GPC-440512511.04
    BP2000--15252.04
    下载: 导出CSV

    Table  2.   Elemental compositions of GPCs and BP2000.

    SampleXPS (at. %)Elemental analysis (wt. %)
    C O N C O N
    GPC-184.3411.313.9576.2713.318.81
    GPC-283.5710.226.2176.8914.187.00
    GPC-378.3413.965.7272.7119.315.91
    GPC-483.519.805.6374.3315.807.22
    BP200086.1213.88-96.732.73-
    下载: 导出CSV

    Table  3.   A summary of the cycle performance of previously reported biomass based carbon hosts.

    SamplesSulfur content
    (wt. %)
    Sulfur loading
    (mg cm−2)
    Rate
    (C)
    Initial capacity
    (mAh g−1)
    CyclesCapacity
    (mAh g−1)
    Capacity decay
    (%)
    Refs.
    MPNC-S80.0%1.10.11013508104.06[52]
    M/P-1/S60.0%-0.211451007583.87[40]
    MCF/S57.2%-0.051285508788.14[53]
    S/ACF60.0%-0.212581007505.08[21]
    N-PCNF/S77.0%0.9-1.00.21077.21807501.82[54]
    GPC-2-S78.4%1.650.113841006087.76This work
    下载: 导出CSV
  • [1] Armand M, Tarascon J. Building better batteries[J]. Nature,2008,451:652-657. doi: 10.1038/451652a
    [2] Zhao M, Li B, Zhang X, et al. A Perspective toward practical lithium-sulfur batteries[J]. ACS Central Science,2020,6(7):1095-1104. doi: 10.1021/acscentsci.0c00449
    [3] Liu T, Hu H, Ding X, et al. 12 years roadmap of the sulfur cathode for lithium sulfur batteries (2009-2020)[J]. Energy Storage Materials,2020,30:346-366. doi: 10.1016/j.ensm.2020.05.023
    [4] Ji X, Lee K T, Nazar L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nature Materials,2009,8(6):500-506. doi: 10.1038/nmat2460
    [5] Ahn W, Kim K B, Jung K N, et al. Synthesis and electrochemical properties of a sulfur-multi walled carbon nanotubes composite as a cathode material for lithium sulfur batteries[J]. Journal of Power Sources,2012,202:394-399. doi: 10.1016/j.jpowsour.2011.11.074
    [6] Liu X, Zhang Q, Huang J, et al. Hierarchical nanostructured composite cathode with carbon nanotubes as conductive scaffold for lithium-sulfur batteries[J]. Journal of Energy Chemistry,2013,22(2):341-346. doi: 10.1016/S2095-4956(13)60042-X
    [7] Wang D, Yu Y, Zhou W, et al. Infiltrating sulfur in hierarchical architecture MWCNT@meso C core-shell nanocomposites for lithium-sulfur batteries[J]. Physical Chemistry Chemical Physics: PCCP,2013,15(23):9051-9057. doi: 10.1039/c3cp51551f
    [8] Ji L, Rao M, Aloni S, et al. Porous carbon nanofiber–sulfur composite electrodes for lithium/sulfur cells[J]. Energy & Environmental Science,2011,4(12):5053-5059.
    [9] Zheng G, Yang Y, Cha J J, et al. Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries[J]. Nano Letters,2011,11(10):4462-4467. doi: 10.1021/nl2027684
    [10] Zheng G, Zhang Q, Cha J J, et al. Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries[J]. Nano Letters,2013,13(3):1265-1270. doi: 10.1021/nl304795g
    [11] Zheng S, Han P, Han Z, et al. High performance C/S composite cathodes with conventional carbonate-based electrolytes in Li-S battery[J]. Scientific Reports,2014,4(4842
    [12] Zhang W, Qiao D, Pan J, et al. A Li+-conductive microporous carbon–sulfur composite for Li-S batteries[J]. Electrochimica Acta,2013,87:497-502. doi: 10.1016/j.electacta.2012.09.086
    [13] Schuster J, He G, Mandlmeier B, et al. Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium-sulfur batteries[J]. Angewandte Chemie. International Ed. in English,2012,51(15):3591-3595. doi: 10.1002/anie.201107817
    [14] Ji L, Rao M, Zheng H, et al. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells[J]. Journal of the American Chemical Society,2011,133(46):18522-18525. doi: 10.1021/ja206955k
    [15] Ma Z, Dou S, Shen A, et al. Sulfur-doped graphene derived from cycled lithium-sulfur batteries as a metal-free electrocatalyst for the oxygen reduction reaction[J]. Angewandte Chemie. International Ed. in English,2015,54(6):1888-1892. doi: 10.1002/anie.201410258
    [16] Dörfler S, Althues H, Härtel P, et al. Challenges and key parameters of lithium-sulfur batteries on pouch cell level[J]. Joule,2020,4(3):539-554. doi: 10.1016/j.joule.2020.02.006
    [17] Pang Q, Kundu D, Cuisinier M, et al. Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries[J]. Nature Communications,2014,5(1):4759. doi: 10.1038/ncomms5759
    [18] Dong Y, Zheng S, Qin J, et al. All-MXene-based integrated electrode constructed by Ti3C2 nanoribbon framework host and nanosheet interlayer for high-energy-density Li-S batteries[J]. ACS Nano,2018,12(3):2381-2388. doi: 10.1021/acsnano.7b07672
    [19] Boyjoo Y, Shi H, Olsson E, et al. Molecular-level design of pyrrhotite electrocatalyst decorated hierarchical porous carbon spheres as nanoreactors for lithium-sulfur batteries[J]. Advanced Energy Materials,2020,10(20):2000651. doi: 10.1002/aenm.202000651
    [20] Han S W, Jung D W, Jeong J H, et al. Effect of pyrolysis temperature on carbon obtained from green tea biomass for superior lithium ion battery anodes[J]. Chemical Engineering Journal,2014,254:597-604. doi: 10.1016/j.cej.2014.06.021
    [21] Zhang J, Xiang J, Dong Z, et al. Biomass derived activated carbon with 3D connected architecture for rechargeable lithium-sulfur batteries[J]. Electrochimica Acta,2014,116:146-151. doi: 10.1016/j.electacta.2013.11.035
    [22] Chen S, Liu Q, He G, et al. Reticulated carbon foam derived from a sponge-like natural product as a high-performance anode in microbial fuel cells[J]. Journal of Materials Chemistry,2012,22(35):18609-18613. doi: 10.1039/c2jm33733a
    [23] Yao H, Zheng G, Li W, et al. Crab shells as sustainable templates from nature for nanostructured battery electrodes[J]. Nano Letters,2013,13(7):3385-3390. doi: 10.1021/nl401729r
    [24] Benítez A, González-Tejero M, Caballero Á, et al. Almond shell as a microporous carbon source for sustainable cathodes in lithium(-)sulfur batteries[J]. Materials (Basel),2018,11(8):1428. doi: 10.3390/ma11081428
    [25] Tao X, Zhang J, Xia Y, et al. Bio-inspired fabrication of carbon nanotiles for high performance cathode of Li-S batteries[J]. Journal of Materials Chemistry A,2014,2(7):2290-2296. doi: 10.1039/C3TA14113F
    [26] Liu S, Zhao S, Yao Y, et al. Crystallined hybrid carbon synthesized by catalytic carbonization of biomass and in-situ growth of carbon nanofibers[J]. Journal of Materials Science & Technology,2014,30(5):466-472.
    [27] Tao X, Dong L, Wang X, et al. B4C-nanowires/carbon-microfiber hybrid structures and composites from cotton T-shirts[J]. Advanced Materials,2010,22(18):2055-2059. doi: 10.1002/adma.200903071
    [28] Tao X, Du J, Li Y, et al. TaC Nanowire/activated carbon microfiber hybrid structures from bamboo fibers[J]. Advanced Energy Materials,2011,1(4):534-539. doi: 10.1002/aenm.201100191
    [29] Tao X, Li Y, Du J, et al. A generic bamboo-based carbothermal method for preparing carbide (SiC, B4C, TiC, TaC, NbC, TixNb1-xC, and TaxNb1-xC) nanowires[J]. Journal of Materials Chemistry,2011,21(25):9095-9102. doi: 10.1039/c1jm10730e
    [30] Fawaz W, Mosavati N, Abdelhamid E, et al. Synthesis of activated carbons derived from avocado shells as cathode materials for lithium–sulfur batteries[J]. SN Applied Sciences,2019,1(4):289-298. doi: 10.1007/s42452-019-0300-3
    [31] Dam D T, Lee J-M. Capacitive behavior of mesoporous manganese dioxide on indium-tin oxide nanowires[J]. Nano Energy,2013,2(5):933-942. doi: 10.1016/j.nanoen.2013.03.014
    [32] Li J, Yang Z, Zhao L, et al. Biowaste-derived three-dimensional nitrogen-doped hierarchically porous carbon materials for lithium-sulfur batteries[J]. Chinese Science Bulletin,2018,63(35):3843-3854. doi: 10.1360/N972018-00843
    [33] Zhang B, Qin X, Li G, et al. Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres[J]. Energy & Environmental Science,2010,3(10):1531-1537.
    [34] Sevilla M, Fuertes A B. Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides[J]. Chemistry,2009,15(16):4195-4203. doi: 10.1002/chem.200802097
    [35] Xin S, Gu L, Zhao N-H, et al. Smaller sulfur molecules promise better lithium-sulfur batteries[J]. Journal of the American Chemical Society,2012,134(45):18510-18513. doi: 10.1021/ja308170k
    [36] Wang D W, Zhou G, Li F, et al. A microporous-mesoporous carbon with graphitic structure for a high-rate stable sulfur cathode in carbonate solvent-based Li-S batteries[J]. Physical Chemistry Chemical Physics: PCCP,2012,14:8703-8710. doi: 10.1039/c2cp40808b
    [37] Ma L, Chen R, Zhu G, et al. Cerium oxide nanocrystal embedded bimodal micromesoporous nitrogen-rich carbon nanospheres as effective sulfur host for lithium-sulfur batteries[J]. ACS Nano,2017,11(7):7274-7283. doi: 10.1021/acsnano.7b03227
    [38] Li L, Zhou G, Yin L, et al. Stabilizing sulfur cathodes using nitrogen-doped graphene as a chemical immobilizer for LiS batteries[J]. Carbon,2016,108:120-126. doi: 10.1016/j.carbon.2016.07.008
    [39] Song J, Gordin M L, Xu T, et al. Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high-performance lithium-sulfur battery cathodes[J]. Angewandte Chemie. International Ed. in English,2015,54(14):4325-4329. doi: 10.1002/anie.201411109
    [40] Sun F, Wang J, Chen H, et al. High efficiency immobilization of sulfur on nitrogen-enriched mesoporous carbons for Li-S batteries[J]. ACS Applied Materials & Interfaces,2013,5(12):5630-5638.
    [41] Xu J, Zhu J, Yang X, et al. Synthesis of organized layered carbon by self-templating of dithiooxamide[J]. Advanced Materials,2016,28(31):6727-6733. doi: 10.1002/adma.201600707
    [42] Fechler N, Zussblatt N P, Rothe R, et al. Eutectic syntheses of graphitic carbon with high pyrazinic nitrogen content[J]. Advanced Materials,2016,28(6):1287-1294. doi: 10.1002/adma.201501503
    [43] Lu L, Sahajwalla V, Kong C, et al. Quantitative X-ray diffraction analysis and its application to various coals[J]. Carbon,2001,39(12):1821-1833. doi: 10.1016/S0008-6223(00)00318-3
    [44] Qin J, He C, Zhao N, et al. Graphene Networks anchored withsn@graphene as lithium ion battery anode[J]. ACS Nano,2014,8(2):1728-1738. doi: 10.1021/nn406105n
    [45] Yin L, Wang J, Lin F, et al. Polyacrylonitrile/graphene composite as a precursor to a sulfur-based cathode material for high-rate rechargeable Li-S batteries.[J]. Energy & Environmental Science,2012,2012(5):6966-6972.
    [46] Xu B, Hou S, Cao G, et al. Sustainable nitrogen-doped porous carbon with high surface areas prepared from gelatin for supercapacitors[J]. Journal of Materials Chemistry,2012,22(36):19088-19093. doi: 10.1039/c2jm32759g
    [47] Hulicova-Jurcakova D, Seredych M, Lu G Q, et al. Combined effect of nitrogen- and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors[J]. Advanced Functional Materials,2009,19(3):438-447. doi: 10.1002/adfm.200801236
    [48] Yang Z, Yao Z, Li G, et al. Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction[J]. ACS Nano,2012,6(1):205-211. doi: 10.1021/nn203393d
    [49] Seredych M, Hulicova-Jurcakova D, Lu G Q, et al. Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance[J]. Carbon,2008,46(11):1475-1488. doi: 10.1016/j.carbon.2008.06.027
    [50] Li J, Li S, Liu Q, et al. Synthesis of Hydrogen-substituted graphyne film for lithium-sulfur battery applications[J]. Small,2019,15(13):e1805344. doi: 10.1002/smll.201805344
    [51] Zheng C, Niu S, Lv W, et al. Propelling polysulfides transformation for high-rate and long-life lithium-sulfur batteries[J]. Nano Energy,2017,33:306-312. doi: 10.1016/j.nanoen.2017.01.040
    [52] Song J, Xu T, Gordin M L, et al. Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium-sulfur batteries[J]. Advanced Functional Materials,2014,24(9):1243-1250. doi: 10.1002/adfm.201302631
    [53] Tao X, Chen X, Xia Y, et al. Highly mesoporous carbon foams synthesized by a facile, cost-effective and template-free Pechini method for advanced lithium-sulfur batteries[J]. Journal of Materials Chemistry A,2013,1(10):3295-3301. doi: 10.1039/c2ta01213h
    [54] Yang J, Xie J, Zhou X, et al. Functionalized N-doped porous carbon nanofiber webs for a lithium-sulfur battery with high capacity and rate performance[J]. The Journal of Physical Chemistry C,2014,118(4):1800-1807. doi: 10.1021/jp410385s
    [55] Yang D, Zhou H, Liu H, et al. Hollow N-doped carbon polyhedrons with hierarchically porous shell for confinement of polysulfides in lithium-sulfur batteries[J]. Science,2019,13:243-253. doi: 10.1016/j.isci.2019.02.019
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  677
  • HTML全文浏览量:  358
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-06
  • 修回日期:  2021-01-11
  • 刊出日期:  2021-02-01

目录

    /

    返回文章
    返回