留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Carbon nanotube-supported MoSe2 nanoflakes as an interlayer for lithium-sulfur batteries

SHAO Zhi-tao WU Li-li YANG Yue MA Xin-zhi LI Lu YE Hong-feng ZHANG Xi-tian

邵智韬, 武立立, 杨月, 马新志, 李璐, 叶红凤, 张喜田. 碳纳米管承载MoSe2纳米片作为锂硫电池的夹层材料[J]. 新型炭材料, 2021, 36(1): 219-226. doi: 10.1016/S1872-5805(21)60015-X
引用本文: 邵智韬, 武立立, 杨月, 马新志, 李璐, 叶红凤, 张喜田. 碳纳米管承载MoSe2纳米片作为锂硫电池的夹层材料[J]. 新型炭材料, 2021, 36(1): 219-226. doi: 10.1016/S1872-5805(21)60015-X
SHAO Zhi-tao, WU Li-li, YANG Yue, MA Xin-zhi, LI Lu, YE Hong-feng, ZHANG Xi-tian. Carbon nanotube-supported MoSe2 nanoflakes as an interlayer for lithium-sulfur batteries[J]. NEW CARBOM MATERIALS, 2021, 36(1): 219-226. doi: 10.1016/S1872-5805(21)60015-X
Citation: SHAO Zhi-tao, WU Li-li, YANG Yue, MA Xin-zhi, LI Lu, YE Hong-feng, ZHANG Xi-tian. Carbon nanotube-supported MoSe2 nanoflakes as an interlayer for lithium-sulfur batteries[J]. NEW CARBOM MATERIALS, 2021, 36(1): 219-226. doi: 10.1016/S1872-5805(21)60015-X

碳纳米管承载MoSe2纳米片作为锂硫电池的夹层材料

doi: 10.1016/S1872-5805(21)60015-X
详细信息
  • 中图分类号: TB34

Carbon nanotube-supported MoSe2 nanoflakes as an interlayer for lithium-sulfur batteries

Funds: This work was partially supported by National Natural Science Foundation of China (11504097, 51772069), and Fundamental Research Funds for the Provincial Universities of Heilongjiang
More Information
  • 摘要: 多硫化物的穿梭效应是锂硫(Li-S)电池最致命的固有问题。本文通过在商业聚丙烯隔膜上涂覆碳纳米管支撑的MoSe2纳米片,成功构建了对多硫化物具有强吸附作用的功能化夹层,有效抑制了多硫化物穿梭效应的发生。将该功能化隔膜用于锂硫电池,可获得良好的储能性质。在电流密度为0.1 C时,电池的初始比容量高达1485 mAh g−1。在高电流密度(2 C)下,电池的比容量仍能达到880 mAh g−1,说明电池的倍率性能较好。此外,电池在电流密度为0.5 C时表现出优异的长期循环稳定性。在循环300次的过程中,电池每圈容量的衰减率仅为0.093%。这些优异的储能特性得益于MoSe2对多硫化物的强吸附作用以及CNTs良好的导电性。
  • Scheme 1.  The preparation process of M/C-PP separator.

    Figure  1.  (a) XRD patterns and (b) SEM image of MoSe2/CNTs composites (Inset is the corresponding EDX).

    Figure  2.  (a, c) HRTEM images and (b) SAED patterns of MoSe2/CNTs.

    Figure  3.  (a) CV curves, (b) EIS plots, (c) GCD curves, and (d) cycling performance at 0.1 C, (e) Rate performance, (f) Cycling stability and coulombic efficiency of the Li-S batteries with PP, M-PP and M/C-PP at 0.5 C.

    Figure  4.  Digital photos of (a) Li foil, (b) Li foil with M/C-PP, (c) Li foil with PP. SEM images and elemental mappings of (d) MoSe2/CNT, (e) M/C-PP at 0.5 C after 100 cycles. (f) Digital photo of visualized adsorption tests of CNT, MoSe2 and MoSe2/CNTs with Li2S6. (g) Polarization curves of the symmetric cells with MoSe2/CNTs-carbon paper and pristine carbon paper electrodes. (h) The adsorption and catalytic effect of MoSe2/CNT on LiPSs.

  • [1] Yu M P, Ma J S, Song H Q, et al. Atomic layer deposited TiO2 on a nitrogen-doped graphene/sulfur electrode for high performance lithium–sulfur batteries[J]. Energy & Environmental Science,2016,9:1495-1503.
    [2] Zhou J W, Li R, Fan X X, et al. Rational design of a metal-organic framework host for sulfur storage in fast, long-cycle Li-S batteries[J]. Energy & Environmental Science,2014,7:2715-2724.
    [3] Marzieh B, Adam S B, Anand I B, et al. Lithium-sulfur batteries—the solution is in the electrolyte, but is the electrolyte a solution?[J]. Energy & Environmental Science,2014,7:3902-3920.
    [4] Liu B, Zhang J G, Xu W, et al. Advancing lithium metal batteries[J]. Joule,2018,2:833-845. doi: 10.1016/j.joule.2018.03.008
    [5] Steven. C, Cui Y, Liu N, et al. The path towards sustainable energy[J]. Nature Materials,2017,16:16-22. doi: 10.1038/nmat4834
    [6] Zhang J T, Hu H, Li Z, et al. Double-shelled nanocages with cobalt hydroxide inner shell and layered double hydroxides outer shell as high-efficiency polysulfide mediator for lithium-sulfur batteries[J]. Angewandte Chemie-International Edition,2016,128:4050-4054.
    [7] Kang W M, Deng N P, Ju J G, et al. A review of recent developments in rechargeable lithium-sulfur batteries[J]. Nanoscale,2016,8:16541-16588. doi: 10.1039/C6NR04923K
    [8] Liu R Q, Kang Q, Liu W H, et al. Carbon nanotube-connected yolk-shell carbon nanopolyhedras with cobalt and nitrogen doping as sulfur immobilizers for high-performance lithium-sulfur batteries[J]. ACS Applied Energy Materials,2018,1:6487-6496. doi: 10.1021/acsaem.8b01422
    [9] Sarish R, Tang T Y, Zeeshan A, et al. Integrated design of MnO2@carbon hollow nanoboxes to synergistically encapsulate polysulfides for empowering lithium sulfur batteries[J]. Small,2017,13:1700087. doi: 10.1002/smll.201700087
    [10] Pei F, Lin L L, Fu A, et al. A two-dimensional porous carbon-modified separator for high-energy-density Li-S batteries[J]. Joule,2018,2:323-336. doi: 10.1016/j.joule.2017.12.003
    [11] Song J J, Zhang C Y, Guo X, et al. Entrapping polysulfides by using ultrathin hollow carbon sphere-functionalized separators in high-rate lithium-sulfur batteries[J]. Journal of Materials Chemistry A,2018,6:16610-16616. doi: 10.1039/C8TA04800B
    [12] Fang D L, Wang Y L, Liu X Z, et al. Spider-web-inspired nanocomposite-modified separator: structural and chemical cooperativity inhibiting the shuttle effect in Li−S batteries[J]. ACS Nano,2019,13:1563-1573.
    [13] Chen H H, Xiao Y W, Chen C, et al. Conductive MOF-modified separator for mitigating the shuttle effect of lithium−sulfur battery through a filtration method[J]. ACS Applied Materials & Interfaces,2019,11:11459-11465.
    [14] Chen X, Huang Y D, Li J, et al. Bifunctional separator with sandwich structure for high-performance lithium-sulfur batteries[J]. Journal of Colloid and Interface Science,2020,559:13-20. doi: 10.1016/j.jcis.2019.10.001
    [15] Shao H Y, Wang W K, Zhang H, et al. Nano-TiO2 decorated carbon coating on the separator to physically and chemically suppress the shuttle effect for lithium-sulfur battery[J]. Journal of Power Sources,2018,378:537-545. doi: 10.1016/j.jpowsour.2017.12.067
    [16] He J R, Gregory H, Myungsuk L, et al. Freestanding 1T MoS2/graphene heterostructures as a highly efficient electrocatalyst for lithium polysulfides in Li–S batteries[J]. Energy & Environmental Science,2019,12:344-350.
    [17] Zhang Y L, Mu Z J, Yang C, et al. Rational design of MXene/1T-2H MoS2-C nanohybrids for high-performance lithium-sulfur batteries[J]. Advanced Functional Materials,2018,28:1707578. doi: 10.1002/adfm.201707578
    [18] Hu Q Q, Lu J Q, Yang C, et al. Promoting reversible redox kinetics by separator architectures based on CoS2/HPGC interlayer as efficient polysulfide-trapping shield for Li-S batteries[J]. Small,2020,16:2002046. doi: 10.1002/smll.202002046
    [19] Ma K, Jiang H, Hu Y J, et al. 2D nanospace confined synthesis of pseudocapacitance-dominated MoS2-in-Ti3C2 superstructure for ultrafast and stable Li/Na-ion batteries[J]. Advanced Functional Materials,2018,28:1804306. doi: 10.1002/adfm.201804306
    [20] Yu X Y, Zhou G M, Cui Y, et al. Mitigation of shuttle effect in Li-S battery using a self-assembled ultrathin molybdenum disulfide interlayer[J]. ACS Applied Materials & Interfaces,2019,11:3080-3086.
    [21] Liu J P, Liu Y Z, Xu D Y, et al. Hierarchical “nanoroll” like MoS2/Ti3C2Tx hybrid with high electrocatalytic hydrogen evolution activity[J]. Applied Catalysis B: Environmental,2019,241:89-94. doi: 10.1016/j.apcatb.2018.08.083
    [22] Shan X Y, Zhang S, Zhang N, et al. Synthesis and characterization of three-dimensional MoS2@carbon fibers hierarchical architecture with high capacity and high mass loading for Li-ion batteries[J]. Journal of Colloid and Interface Science,2018,510:327-333. doi: 10.1016/j.jcis.2017.09.078
    [23] Xie X Q, Taron M, Zhao M Q, et al. MoS2 nanosheets vertically aligned on carbon paper: a freestanding electrode for highly reversible sodium-ion batteries[J]. Advanced Energy Materials,2016,6:1502161. doi: 10.1002/aenm.201502161
    [24] Wang R, Li J, Zhang Y, et al. Improved Li-S batteries obtained by using multifunctional separators modified with vapor grown carbon fiber/MoS2 composites[J]. Ceramics International,2020,46:19408-19415. doi: 10.1016/j.ceramint.2020.04.284
    [25] Meng L S, Yao Y, Liu J, et al. MoSe2 nanosheets as a functional host for lithium-sulfur batteries[J]. Journal of Energy Chemistry,2020,47:241-247. doi: 10.1016/j.jechem.2020.02.003
    [26] Muhammad Y, Wang Y S, Chen Y J, et al. A 3D trilayered CNT/MoSe2/C heterostructure with an expanded MoSe2 interlayer spacing for an efficient sodium storage[J]. Advanced Energy Materials,2019,9:1900567. doi: 10.1002/aenm.201900567
    [27] Hao Q Y, Cui G L, Zhang Y G, et al. Novel MoSe2/MoO2 heterostructure as an effective sulfur host for high-performance lithium/sulfur batteries[J]. Chemical Engineering Journal,2020,381:122672. doi: 10.1016/j.cej.2019.122672
    [28] Tian W Z, Xi B J, Feng Z Y, et al. Sulfiphilic few-layered MoSe2 nanoflakes decorated rGO as a highly efficient sulfur host for lithium-sulfur batteries[J]. Advanced Energy Materials,2019,9:1901896. doi: 10.1002/aenm.201901896
    [29] Fan C Y, Zheng Y P, Zhang X H, et al. High-performance and low-temperature lithium–sulfur batteries: synergism of thermodynamic and kinetic regulation[J]. Advanced Energy Materials,2018,25:1703638.
    [30] Muhammad Y, Wang Y S, Chen Y J, et al. Tunable free-standing core-shell CNT@MoSe2 anode for lithium storage[J]. ACS Applied Materials & Interfaces,2018,10:14622-14631.
    [31] Xu E Z, Zhang Y, Wang H, et al. Ultrafast kinetics net electrode assembled via MoSe2/MXene heterojunction for high-performance sodium-ion batteries[J]. Chemical Engineering Journal,2020,385:123839. doi: 10.1016/j.cej.2019.123839
    [32] Deng S J, Yang F, Zhang Q H, et al. Phase modulation of (1T-2H)-MoSe2/TiC-C shell/core arrays via nitrogen doping for highly efficient hydrogen evolution reaction[J]. Advanced Materials,2018,30:1802223. doi: 10.1002/adma.201802223
    [33] Song Y Z, Sun Z T, Fan Z D, et al. Rational design of porous nitrogen-doped Ti3C2 MXene as a multifunctional electrocatalyst for Li-S chemistry[J]. Nano Energy,2020,70:104555. doi: 10.1016/j.nanoen.2020.104555
  • 加载中
图(6)
计量
  • 文章访问数:  105
  • HTML全文浏览量:  18
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-08
  • 修回日期:  2020-12-18
  • 网络出版日期:  2021-02-03
  • 刊出日期:  2021-02-01

目录

    /

    返回文章
    返回