留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Co, N co-doped porous carbons as high-performance oxygen reduction electrocatalysts

ZHANG Jing SONG Liang-hao ZHAO Chen-fei YIN Xiu-ping ZHAO Yu-feng

张晶, 宋良浩, 赵晨妃, 殷秀平, 赵玉峰. 钴,氮共掺杂多孔炭用于高性能氧还原电催化剂[J]. 新型炭材料, 2021, 36(1): 209-218. doi: 10.1016/S1872-5805(21)60016-1
引用本文: 张晶, 宋良浩, 赵晨妃, 殷秀平, 赵玉峰. 钴,氮共掺杂多孔炭用于高性能氧还原电催化剂[J]. 新型炭材料, 2021, 36(1): 209-218. doi: 10.1016/S1872-5805(21)60016-1
ZHANG Jing, SONG Liang-hao, ZHAO Chen-fei, YIN Xiu-ping, ZHAO Yu-feng. Co, N co-doped porous carbons as high-performance oxygen reduction electrocatalysts[J]. NEW CARBOM MATERIALS, 2021, 36(1): 209-218. doi: 10.1016/S1872-5805(21)60016-1
Citation: ZHANG Jing, SONG Liang-hao, ZHAO Chen-fei, YIN Xiu-ping, ZHAO Yu-feng. Co, N co-doped porous carbons as high-performance oxygen reduction electrocatalysts[J]. NEW CARBOM MATERIALS, 2021, 36(1): 209-218. doi: 10.1016/S1872-5805(21)60016-1

钴,氮共掺杂多孔炭用于高性能氧还原电催化剂

doi: 10.1016/S1872-5805(21)60016-1
详细信息
  • 中图分类号: TB33

Co, N co-doped porous carbons as high-performance oxygen reduction electrocatalysts

Funds: We thank the financial supports from the National Natural Science Foundation of China (51774251), Hebei Natural Science Foundation for Distinguished Young Scholars (B2017203313), Shanghai Science and Technology Commission’s “2020 Science and Technology Innovation Action Plan” (20511104003), Hundred Excellent Innovative Talents Support Program in Hebei Province (SLRC2017057), Talent Engineering Training Funds of Hebei Province (A201802001), and the Opening Project of the State Key Laboratory of Advanced Chemical Power Sources (SKL-ACPS-C-11)
More Information
  • 摘要: 钴和氮共掺杂炭催化剂(Co-NC),由于成本低廉和资源丰富而备受关注,但其低的氧还原反应(ORR)活性和对氧气的双电子(2e-)还原生成H2O2的高选择性,进一步影响了其在燃料电池中的应用。因此,Co-NC催化剂是通过在650、750和850 ℃下热解CoCl2和壳聚糖的混合物(用ZnCl2预处理),然后用HNO3洗涤并在900 ℃下退火而制备。结果表明,ZnCl2有利于壳聚糖与Co2+的络合,同时也是造孔的化学活化剂。此外,退火会导致通过碳热还原锌离子形成球形Zn金属纳米颗粒蒸发,从而形成Co-NC催化剂独特的多孔结构,其球形孔填充了球形炭纳米颗粒,而球形炭纳米颗粒在Co催化过程中氮掺杂炭生长而形成。在Co催化下,催化剂的石墨化度得到了改善。在750 ℃的热解温度下获得的Co-NC催化剂与商业Pt/C催化剂相比,具有相同的4e-路径,展现出更高的ORR催化活性、长期稳定性和甲醇耐受性,这得益于其大的比表面积、可分散Co物种的高吡啶氮和石墨氮含量及其优异的导电性。
  • Figure  1.  Synthesis illustration of Co−NC catalysts.

    Figure  2.  SEM images of (a, d) Co-NC-850, (b, e) Co-NC-750 and (c, f) Co-NC-650.

    Figure  3.  (a) TEM and (b) HRTEM images of Co-NC-750, (c) selected area electron diffraction (SAED) pattern of Co-NC-750, (d-f) carbon, nitrogen and cobalt elemental-mappings of Co-NC-750, with color indicative of the signal intensity.

    Figure  4.  (a) XRD patterns, (b) Raman spectra, (c) N2 adsorption desorption isotherms and (d) the BJH pore size distributions of Co-NC-850, Co-NC-750, Co-NC-650 catalysts.

    Figure  5.  (a-f) High-resolution XPS spectra of Co-NC-750 catalyst.

    Figure  6.  (a) CV curves of Co-NC-750 in N2- and O2-saturated 0.1 mol L−1 KOH electrolytes, (b) LSV curves of Co-NC-850, Co-NC-750, Co-NC-650, 20% Pt/C and NC at a rotating rate of 1600 r/rim in the O2-saturated 0.1 mol L−1 KOH electrolyte, (c) E1/2, Jd and (d) Tafel plots of Co-NC-850, Co-NC-750, Co-NC-650, 20% Pt/C and NC, (e) LSV curves of Co-NC-750 at different rotations of 400–2025 r/min, (f) corresponding K-L plots and electron transfer numbers, (g) LSV curves of Co-NC-750 before and after 10000 cycles, (h) chronoamperometric response of Co-NC-750 and 20% Pt/C and (i) methanol tolerance tests of Co-NC-750 and 20% Pt/C.

  • [1] Wang L, Fu L, Li J, et al. On an easy way to prepare highly efficient Fe/N-co-doped carbon nanotube/nanoparticle composite for oxygen reduction reaction in Al-air batteries[J]. Journal of Materials Science,2018,53:10280-10291. doi: 10.1007/s10853-018-2245-0
    [2] Zhang B, Wang S, Fan W, et al. Photoassisted oxygen reduction reaction in H2-O2 fuel cells[J]. Angewandte Chemie International Edition,2016,128:14748-14751.
    [3] Long T X, Lijuan W, Bin C, et al. Formation of tubular assembly by ultrathin Ti0.8Co0.2N nanosheets as efficient oxygen reduction electrocatalyst for hydrogen-/metal-air fuel cells[J]. ACS Catalysis,2018,8:8970-8975. doi: 10.1021/acscatal.8b02710
    [4] Zhao Y P, Tao L, Dang W, et al. High-Indexed PtNi alloy skin spiraled on Pd nanowires for highly efficient oxygen reduction reaction catalysis[J]. Small,2019,15:1900288-1900296. doi: 10.1002/smll.201900288
    [5] Zhou X, Liu X, Zhang J, et al. Highly-dispersed cobalt clusters decorated onto nitrogen-doped carbon nanotubes as multifunctional electrocatalysts for OER, HER and ORR[J]. Carbon,2020,166:284-290. doi: 10.1016/j.carbon.2020.05.037
    [6] Xie B, Zhang Y, Zhang R. Pure nitrogen-doped graphene aerogel with rich micropores yields high ORR performance[J]. Materials Science and Engineering B,2019,242:1-5. doi: 10.1016/j.mseb.2019.02.012
    [7] Liu L, Zeng G, Chen J, et al. N-doped porous carbon nanosheets as pH-universal ORR electrocatalyst in various fuel cell devices[J]. Nano Energy,2018,49:393-402. doi: 10.1016/j.nanoen.2018.04.061
    [8] Fan M, Cui J, Wu J, et al. Improving the catalytic activity of carbon-supported single atom catalysts by polynary metal or heteroatom doping[J]. Small,2020,16:e1906782. doi: 10.1002/smll.201906782
    [9] Wang J, Xu R, Sun Y L, et al. Identifying the Zn-Co binary as a robust bifunctional oxygen electroncatalyst via shifting the apexes of volcano plot[J]. Journal of Energy Chemistry,2021,55:162-168. doi: 10.1016/j.jechem.2020.07.010
    [10] Zhang J, Huang Q A, Wang J, et al. Supported dual atom catalysts: Preparation, characterization and potential applications[J]. Chinese Journal of Catalysis,2020,41:783-798. doi: 10.1016/S1872-2067(20)63536-7
    [11] Yang C C, Zai S F, Zhou Y T, et al. Fe3C-Co nanoparticles encapsulated in a hierarchical structure of N-doped carbon as a multifunctional electrocatalyst for ORR, OER and HER[J]. Advanced Functional Materials,2019,29:1901949-1901955.
    [12] Wang Z Y, Jiang S D, Duan C Q, et al. In situ synthesis of Co3O4 nanoparticles confined in 3D nitrogen-doped porous carbon as an efficient bifunctional oxygen electrocatalyst[J]. Rare Metals,2020,39:1383-1394. doi: 10.1007/s12598-020-01581-4
    [13] He G, Qiao M, Li W, et al. S, N-Co-doped graphene-nickel cobalt sulfide aerogel: Improved energy storage and electrocatalytic performance[J]. Advanced Science,2017,4:1600214-1600221. doi: 10.1002/advs.201600214
    [14] Wang J, Li H, Liu S, et al. Turning on Zn 4s electrons in a N2-Zn-B2 configuration to stimulate remarkable ORR performance[J]. Angewandte Chemie International Edition,2021,60:181-185. doi: 10.1002/anie.202009991
    [15] Han C, Chen Z. The mechanism study of oxygen reduction reaction (ORR) on non- equivalent P, N co-doped graphene[J]. Applied Surface Science,2020,511:145382-145389. doi: 10.1016/j.apsusc.2020.145382
    [16] Gao S, Fan B, Feng R, et al. N-doped-carbon-coated Fe3O4 from metal-organic framework as efficient electrocatalyst for ORR[J]. Nano Energy,2017,40:462-470. doi: 10.1016/j.nanoen.2017.08.044
    [17] Zhao X, Li Y G. Two-electron oxygen reduction reaction by high-loading molybdenum single-atom catalysts[J]. Rare Metals,2020,39:455-457. doi: 10.1007/s12598-020-01415-3
    [18] Cai S, Meng Z, Tang H, et al. 3D Co-N-doped hollow carbon spheres as excellent bifunctional electrocatalysts for oxygen reduction reaction and oxygen evolution reaction[J]. Applied Catalysis B: Environmental,2017,217:477-484. doi: 10.1016/j.apcatb.2017.06.008
    [19] Sun Y L, Wang J, Liu Q, et al. Itinerant ferromagnetic half metallic Cobalt-Iron couple: Promising bifunctional electrocatalysts for ORR and OER[J]. Journal of Materials Chemistry A,2019,7:27175-27185. doi: 10.1039/C9TA08616A
    [20] Zhu Y, Zhu R, Xi Y, et al. Strategies for enhancing the heterogeneous fenton catalytic reactivity: A review[J]. Applied Catalysis B: Environmental,2019,255:117739-117745. doi: 10.1016/j.apcatb.2019.05.041
    [21] Liu D X, Wang B, Li H G, et al. Distinguished Zn, Co-Nx-C-Sy active sites confined in dendric carbon for highly efficient oxygen reduction reaction and flexible Zn-Air batteries[J]. Nano Energy,2019,58:277-283. doi: 10.1016/j.nanoen.2019.01.011
    [22] Lu Z, Wang B, Hu Y, et al. An isolated Zinc-cobalt atomic pair for highly active and durable oxygen reduction[J]. Angewandte Chemie International Edition,2019,131:2648-2652.
    [23] Yang J, Guo D, Zhao S, et al. Overall water splitting: Cobalt phosphides nanocrystals encapsulated by P-doped carbon and married with P-doped graphene for overall water splitting[J]. Small,2019,15:197052-197058.
    [24] Li H, Wang J, Qi R, et al. Enhanced Fe 3D delocalization and moderate spin polarization in FeNi atomic pairs for bifunctional ORR and OER electrocatalysis – ScienceDirect[J]. Applied Catalysis B: Environmental,2021,285:119778-119784. doi: 10.1016/j.apcatb.2020.119778
    [25] Zhu Z, Yin H, Wang Y, et al. Coexisting single-atomic Fe and Ni sites on hierarchically ordered porous carbon as a highly efficient ORR electrocatalyst[J]. Advanced Materials,2020,32:2004670-2004676. doi: 10.1002/adma.202004670
    [26] Zhang L, Wang A, Wang W, et al. Co-N-C Catalyst for C-C coupling reactions: On the catalytic performance and active sites[J]. ACS Catal,2015,5:6563-6572. doi: 10.1021/acscatal.5b01223
    [27] Wang J, Ge X, Liu Z, et al. Heterogeneous electrocatalyst with molecular cobalt ions serving as the center of active sites[J]. Journal of the American Chemical Society,2017,139:1878-1884. doi: 10.1021/jacs.6b10307
    [28] Dash K C, Folkesson B, Larsson R, et al. An XPS investigation on a series of schiff base dioxime ligands and cobalt complexes[J]. Journal of Electron Spectroscopy and Related Phenomena,1989,49:343-357. doi: 10.1016/0368-2048(89)85022-4
    [29] Fei H, Dong J, Arellano-Jimenez M J, Ye G, et al. Atomic cobalt on nitrogen-doped graphene for hydrogen generation[J]. Nature Communications,2015,6:8668-8674. doi: 10.1038/ncomms9668
    [30] Wang G, Wang H, Lu X G, et al. Solid-state supercapacitor based on activated carbon cloths exhibits excellent rate capability[J]. Advanced Materials,2014,26:2676-2682. doi: 10.1002/adma.201304756
    [31] Liu W, Zhang L, Yan W, et al. Single-atom dispersed Co-N-C catalyst: Structure identification and performance for hydrogenative coupling of nitroarenes[J]. Chemical Science,2016,7:5758-5764. doi: 10.1039/C6SC02105K
    [32] Lu X, Yim W L, Suryanto B H, et al. Electrocatalytic oxygen evolution at surface-oxidized multiwall carbon nanotubes[J]. Journal of the American Chemical Society,2015,137:2901-2907. doi: 10.1021/ja509879r
    [33] Lim J, Jung J W, Kim N Y, et al. N2-dopant of graphene with electrochemically switchable bifunctional ORR/OER catalysis for Zn-Air battery[J]. Energy Storage Materials,2020,32:517-524. doi: 10.1016/j.ensm.2020.06.034
    [34] Shi Q, He Y, Bai X, et al. Methanol tolerance of atomically dispersed single metal site catalysts: Mechanistic understanding and high-performance direct methanol fuel cells[J]. Energy and Environmental Science,2020,13:3544-35455. doi: 10.1039/D0EE01968B
  • 加载中
图(6)
计量
  • 文章访问数:  47
  • HTML全文浏览量:  22
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-16
  • 修回日期:  2021-01-22
  • 网络出版日期:  2021-02-03
  • 刊出日期:  2021-02-01

目录

    /

    返回文章
    返回