留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Recent progress in the use of graphene/polymer composites to remove oil contaminants from water

FENG Zhao-xuan XU Ya-nan YUE Wei-xun Karin H. Adolfsson WU Ming-bo

冯昭璇, 徐亚男, 岳维勋, Karin H.Adolfsson, 吴明铂. 石墨烯/聚合物纳米复合材料去除水中废油污染物的研究进展. 新型炭材料, 2021, 36(2): 235-252. doi: 10.1016/S1872-5805(21)60018-5
引用本文: 冯昭璇, 徐亚男, 岳维勋, Karin H.Adolfsson, 吴明铂. 石墨烯/聚合物纳米复合材料去除水中废油污染物的研究进展. 新型炭材料, 2021, 36(2): 235-252. doi: 10.1016/S1872-5805(21)60018-5
FENG Zhao-xuan, XU Ya-nan, YUE Wei-xun, Karin H. Adolfsson, WU Ming-bo. Recent progress in the use of graphene/polymer composites to remove oil contaminants from water. New Carbon Mater., 2021, 36(2): 235-252. doi: 10.1016/S1872-5805(21)60018-5
Citation: FENG Zhao-xuan, XU Ya-nan, YUE Wei-xun, Karin H. Adolfsson, WU Ming-bo. Recent progress in the use of graphene/polymer composites to remove oil contaminants from water. New Carbon Mater., 2021, 36(2): 235-252. doi: 10.1016/S1872-5805(21)60018-5

石墨烯/聚合物纳米复合材料去除水中废油污染物的研究进展

doi: 10.1016/S1872-5805(21)60018-5
详细信息
  • 中图分类号: TB33

Recent progress in the use of graphene/polymer composites to remove oil contaminants from water

More Information
  • 摘要: 频繁的海上溢油事故和工业含油污水的肆意排放严重破坏海洋生态平衡。因此,开发先进的除油材料迫在眉睫。石墨烯(G)及其衍生物氧化石墨烯(GO)因其具有高比表面积、低密度、高孔隙率、表面功能可调等优异的理化性质,在油水分离领域成为研究热点。为充分发挥其优势,近年来,将G或GO与聚合物复合制备成功能化G/聚合物或GO/聚合物纳米复合材料,因其具有良好的除油能力、优异的机械性能、价格低廉、形貌及表面化学组分可调等优势而越来越受到人们的青睐。目前已开发出气凝胶、泡沫、海绵、膜等具有三维结构的G/聚合物或GO/聚合物复合吸油剂和过滤膜。本文系统性地总结了从表面润湿理论到G/聚合物或GO/聚合物复合吸油材料和滤膜材料的最新研究进展。此外,重点归纳了近年来有关油品回收及吸油材料再生的方法策略。最后,提出该研究领域目前面临的挑战和未来研究方向,旨在为该领域的深入探索开辟新的视角。
  • FIG. 566.  FIG. 566.

    FIG. 566.. 

    Figure  1.  (a) A schematic illustration showing how to measure the contact angle, (b) a schematic illustration of the Wenzel model and (c) a schematic illustration of the Cassie model.

    Figure  2.  (a) Absorption process of AG-1 towards paraffin oil(Sudan red-stained paraffin oil floating on water was completely absorbed within 62 s, (b) absorption capacities of AG-1 (black) and AG-2 (red) towards various oils and common organic solvents (adapted from Ref[51] with permission. Copyright 2014 The Royal Society of Chemistry), (c) a schematic illustration showing the fabrication procedure of CNF/PVA/GO composite aerogels, (d1) photographs of d-MCPGAby freeze-drying methods, (d2) SEM image showing the vertical section of d-MCPGA, (d3) SEM image showing the cross section of d-MCPGA, (e) water contact angles of d-MCPGA measured from 0 s to 120 s, (f) absorption capacities of MCPGA (d-MCPGA, r-MCPGA, n-MCPGA) for various types of oils and organic solvents, (g1) photograph showing the ultra-light cylindrical d-MCPGA hold up by the young leaves, (g2) the shape of the d-MCPGA before bearing 500 g mass load, (g3) the shape of the d-MCPGA after bearing 500 g mass load and (g4) the state of d-MCPGA when bearing 500 g mass load. (adapted from Ref[56] with permission (Copyright 2019 Multidisciplinary Digital Publishing Institute).

    Figure  3.  (a) SEM image of a cellulose nanofibrous foam, (b) physical appearance of the cellulose nanofibrous foam, (c,e) SEM images of a cellulose nanofibrous aerogel at different magnifications and (d) physical appearance of the cellulose nanofibrous aerogel. (adapted from Ref[78] with permission. Copyright 2016 PubMed)

    Figure  4.  (a) The oil and solvent absorption capacities of G/PPy, (b) cyclic absorption capacities of G/PPy foam towards diesel (adapted from Ref[59] with permission. Copyright 2013 The Royal Society of Chemistry), (c) photographs and a schematic illustration showing the fabrication of the rGO@PU foam, (d) absorption capacity of the neat PU and rGO@PU foams towards oils and organic solvents, (e) cyclic absorption capacities of the rGO@PU foam towards oils and organic solvent and (f) oil-removing efficiency of the rGO@PU foam (adapted from Ref[60]with permission. Copyright 2018 Elsevier).

    Figure  5.  (a) Oil/water separation capacities of GO/PES composite flat sheet (FS) and hollow fiber (HF) membranes at different oil concentrations (adapted from Ref[85]with permission. Copyright 2020 Wiley), (b) a schematic illustration showing the preparation procedure of the GO-Ca2+-SA hybrid mesh by layer-by-layer self-assembly and cross-linking (adapted from Ref[91]with permission. Copyright 2020 Elsevier), (c) TEM image of the hybrid membrane with 7 wt% of GO, (left), the magnified TEM image of the spindle-knot structure (middle), the magnified TEM image of PAN and GO sheets (right), (d) relation curves between flux and permeation volume of PAN/GO membranes (left), relation curves between flux and permeation volume of H-PAN/GO membranes (inset was permeation volume = 200 mL) (right) (adapted from Ref[89] with permission. Copyright 2017 Elsevier) and (e) functionalization of GO with aspartic acid (adapted from Ref[90]with permission. Copyright 2017 Elsevier).

    Figure  6.  (a) A schematic illustration showing the fabrication procedure of CGQD-incorporated ENCF membrane, (b) toluene permeation flux of the CGQD-incorporated ENCF membrane with various concentrations of CGQD, (c) the permeation flux of the CGQD-incorporated ENCF membrane to several common organic solvents (adapted from Ref[97] with permission. Copyright 2018 Elsevier).

    Table  1.   The synthetic methods, WCA and oil absorption capacities of G/polymer and GO/polymer composite aerogels and foams.

    MaterialSynthesis methodWater contact angleOil absorption
    capacity (g/g)
    Number of cycleRef.
    G/PVDF aerogelsSolvothermal reduction153.6°20−7010[51]
    PI-GO aerogelSupercritical drying-8.0-[52]
    LGA aerogelsHydrothermal treatment and freeze-drying127°167−35010[54]
    G/CNC aerogelLyophilize andcoating130°25−58100[55]
    CNF/PVA/GO aerogelDirectional freeze-drying technology and hydrophobic treatment142°60−96-[56]
    XPAA/rGO aerogelVacuum heated-120-[57]
    a-GPCCA aerogelDirectional freeze-drying and carbonization140°155−28815[58]
    G/PPy foamsHydrothermal method and vacuum freeze Dried->10011[59]
    rGO@PU foamSolvothermal method153°3750[60]
    G/PU foam-158°700200[61]
    LPU-rGO-ODAfoamDried in air152°26−2820[62]
    PEI/GO foamDried at 60 °C-17>3[63]
    PDMS/GO spongeAmidation reaction and drying under vacuum174.1 ± 0.6 °14.610[64]
    下载: 导出CSV
  • [1] Huang J, Yan Z. Adsorption mechanism of oil by resilient graphene aerogels from oil-water emulsion[J]. Langmuir,2018,34(5):1890-1898. doi: 10.1021/acs.langmuir.7b03866
    [2] Burgherr P. In-depth analysis of accidental oil spills from tankers in the context of global spill trends from all sources[J]. Journal of Hazardous Materials,2007,140(1-2):245-256. doi: 10.1016/j.jhazmat.2006.07.030
    [3] Soto L A, Botello A V. The environmental legacy of the Ixtoc-I oil spill in campeche sound, southwestern gulf of mexico[J]. Frontiers in Marine Science,2014,1(57):1-9.
    [4] Mullin J V, Champ M A. Introduction/overview to in situ burning of oil spills[J]. Spill Science & Technology Bulletin,2003,8(4):323-330.
    [5] Nam C, Li H, Zhang G, et al. Practical oil spill recovery by a combination of polyolefin absorbent and mechanical skimmer[J]. ACS Sustainable Chemistry & Engineering,2018,6(9):12036-12045.
    [6] Zhou X, Wang F, Ji Y, et al. Fabrication of hydrophilic and hydrophobic sites on polypropylene nonwoven for oil spill cleanup: two dilemmas affecting oil sorption[J]. Environmental Science & Technology,2016,50(7):3860-3865.
    [7] Tanudjaja H J, Hejase C A, Tarabara V V, et al. Membrane-based separation for oily wastewater: A practical perspective[J]. Water Research,2019,156:347-365. doi: 10.1016/j.watres.2019.03.021
    [8] Fu C, Gu L, Zeng Z, et al. One-step transformation of metal meshes to robust superhydrophobic and superoleophilic meshes for highly efficient oil spill cleanup and oil/water separation[J]. ACS Applied Materials & Interfaces,2020,12(1):1850-1857.
    [9] Etchepare R, Oliveira H, Azevedo A, et al. Separation of emulsified crude oil in saline water by dissolved air flotation with micro and nanobubbles[J]. Separation and Purification Technology,2017,186:326-332. doi: 10.1016/j.seppur.2017.06.007
    [10] Ron E Z, Rosenberg E. Enhanced bioremediation of oil spills in the sea[J]. Current Opinion in Biotechnology,2014,27:191-194. doi: 10.1016/j.copbio.2014.02.004
    [11] Wan C, Jiao Y, Wei S, et al. Functional nanocomposites from sustainable regenerated cellulose aerogels: A review[J]. Chemical Engineering Journal,2019,359:459-475. doi: 10.1016/j.cej.2018.11.115
    [12] Neinhuis C. Characterization and distribution of water-repellent, self-cleaning plant surfaces[J]. Annals of Botany,1997,79(6):667-677. doi: 10.1006/anbo.1997.0400
    [13] Wen L, Tian Y, Jiang L. Bioinspired super-wettability from fundamental research to practical applications[J]. Angewandte Chemie International Edition,2015,54(11):3387-3399. doi: 10.1002/anie.201409911
    [14] Feng L, Zhang Z, Mai Z, ey al. A super-hydrophobic and super-oleophilic coating mesh film for the separation of oil and water[J]. Angewandte Chemie International Edition,2004,43(15):2012-2014. doi: 10.1002/anie.200353381
    [15] Li H, Wang J, Yang L, et al. Superoleophilic and superhydrophobic inverse opals for oil sensors[J]. Advanced Functional Materials,2008,18(20):3258-3264. doi: 10.1002/adfm.200800507
    [16] Guo Z, Long B, Gao S, et al. Carbon nanofiber based superhydrophobic foam composite for high performance oil/water separation[J]. Journal of Hazardous Materials,2021,402:1-10.
    [17] Ligon S C, Liska R, Stampfl J, et al. Polymers for 3D printing and customized additive manufacturing[J]. Chemical Reviews,2017,117(15):10212-10290. doi: 10.1021/acs.chemrev.7b00074
    [18] Chen C, Weng D, Mahmood A, et al. Separation mechanism and construction of surfaces with special wettability for oil/water separation[J]. ACS Applied Materials and Interfaces,2019,11(11):11006-11027. doi: 10.1021/acsami.9b01293
    [19] Li D, Gou X, Wu D, et al. A robust and stretchable superhydrophobic PDMS/PVDF@KNFs membrane for oil/water separation and flame retardancy[J]. Nanoscale,2018,10(14):6695-6703. doi: 10.1039/C8NR01274A
    [20] Cebeci F Ç, Wu Z, Zhai L, et al. Nanoporosity-driven superhydrophilicity: A means to create multifunctional antifogging coatings[J]. Langmuir,2006,22(6):2856-2862. doi: 10.1021/la053182p
    [21] Adera S, Raj R, Enright R, et al. Non-wetting droplets on hot superhydrophilic surfaces[J]. Nature Communications,2013,4:2518-2524. doi: 10.1038/ncomms3518
    [22] Raturi P, Yadav K, Singh J P. ZnO-nanowires-coated smart surface mesh with reversible wettability for efficient on-demand oil/water separation[J]. ACS Applied Materials and Interfaces,2017,9(7):6007-6013. doi: 10.1021/acsami.6b14448
    [23] Sun P, Wang K, Zhu H. Recent developments in graphene-based membranes: Structure, mass-transport mechanism and potential applications[J]. Advanced Materials,2016,28(12):2287-2310. doi: 10.1002/adma.201502595
    [24] Zhuang Y, Yu F, Ma J, et al. Graphene as a template and structural scaffold for the synthesis of a 3D porous bio-adsorbent to remove antibiotics from water[J]. RSC Advances,2015,5(35):27964-27969. doi: 10.1039/C4RA12413H
    [25] Alammar A, Park S H, Williams C J, et al. Oil-in-water separation with graphene-based nanocomposite membranes for produced water treatment[J]. Journal of Membrane Science,2020,603:118007-118017. doi: 10.1016/j.memsci.2020.118007
    [26] Hegab H M, Zou L. Graphene oxide-assisted membranes: Fabrication and potential applications in desalination and water purification[J]. Journal of Membrane Science,2015,484:95-106. doi: 10.1016/j.memsci.2015.03.011
    [27] Liu H, Qiu H. Recent advances of 3D graphene-based adsorbents for sample preparation of water pollutants: A review[J]. Chemical Engineering Journal,2020,393:124691. doi: 10.1016/j.cej.2020.124691
    [28] Ren R-P, Wang Z, Ren J, et al. Highly compressible polyimide/graphene aerogel for efficient oil/water separation[J]. Journal of Materials Science,2019,54(7):5918-5926. doi: 10.1007/s10853-018-03238-1
    [29] Kim H, Kobayashi S, AbdurRahim M A, et al. Graphene/polyethylene nanocomposites: Effect of polyethylene functionalization and blending methods[J]. Polymer,2011,52(8):1837-1846. doi: 10.1016/j.polymer.2011.02.017
    [30] Zhao J, Ren W, Cheng H M. Graphene sponge for efficient and repeatable adsorption and desorption of water contaminations[J]. Journal of Materials Chemistry,2012,22(38):20197. doi: 10.1039/c2jm34128j
    [31] Liu Y, Ma J, Wu T, et al. Cost-effective reduced graphene oxide-coated polyurethane sponge as a highly efficient and reusable oil-absorbent[J]. ACS Applied Materials & Interfaces,2013,5(20):10018-10026.
    [32] Ebert K, Fritsch D, Koll J, et al. Influence of inorganic fillers on the compaction behaviour of porous polymer based membranes[J]. Journal of Membrane Science,2004,233:71-78. doi: 10.1016/j.memsci.2003.12.012
    [33] Madaeni S S, Zinadini S, Vatanpour V. A new approach to improve antifouling property of PVDF membrane using in situ polymerization of PAA functionalized TiO2 nanoparticles[J]. Journal of Membrane Science,2011,380(1-2):155-162. doi: 10.1016/j.memsci.2011.07.006
    [34] Agboola O, Fayomi O S I, Ayodeji A, et al. A review on polymer nanocomposites and their effective applications in membranes and adsorbents for water treatment and gas separation[J]. Membranes,2021,11(2):1-33.
    [35] Toyoda M, Inagaki M. Heavy oil sorption using exfoliated graphite New application of exfoliated graphite to protect heavy oil pollution[J]. Carbon,2000,38(2):199-210. doi: 10.1016/S0008-6223(99)00174-8
    [36] Hu H, Zhao Z, Gogotsi Y, et al. Compressible carbon nanotube - graphene hybrid aerogels with superhydrophobicity and superoleophilicity for oil sorption[J]. Environmental Science & Technology Letters,2014,1(3):214-220.
    [37] Dong X C, Chen J, Ma Y W, et al. Superhydrophobic and superoleophilic hybrid foam of graphene and carbon nanotube for selective removal of oils or organic solvents from the surface of water[J]. Chemical Communications,2012,48:10660-10662. doi: 10.1039/c2cc35844a
    [38] Junaidi N F D, Othman N H, Fuzil N S, et al. Recent development of graphene oxide-based membranes for oil–water separation: A review[J]. Separation and Purification Technology,2021,258:118000. doi: 10.1016/j.seppur.2020.118000
    [39] Li J J, Zhou Y N, Luo Z H. Polymeric materials with switchable superwettability for controllable oil/water separation: A comprehensive review[J]. Progress in Polymer Science,2018,87:1-33. doi: 10.1016/j.progpolymsci.2018.06.009
    [40] Su B, Tian Y, Jiang L. Bioinspired interfaces with superwettability: From materials to chemistry[J]. Journal of the American Chemical Society,2016,138(6):1727-1748. doi: 10.1021/jacs.5b12728
    [41] Young T. An essay on the cohesion of fluids[J]. Philosophical Transactions of the Royal Society of London,1805,85:65-87.
    [42] Wenzel R N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry,1936,28(8):988-994.
    [43] Cassie A B D, Baxter S. Wettability of porous surfaces[J]. Transactions of the Faraday Society,1944,40:546. doi: 10.1039/tf9444000546
    [44] Qu J Y, Han Q, Gao F, et al. Carbon foams produced from lignin-phenol-formaldehyde resin for oil/water separation[J]. New Carbon Materials,2017,32(1):86-91.
    [45] Zhan W, Yu S, Gao L, et al. Bioinspired assembly of carbon nanotube into graphene aerogel with “cabbagelike” hierarchical porous structure for highly efficient organic pollutants cleanup[J]. ACS Applied Materials & Interfaces,2018,10(1):1093-1103.
    [46] Kistler S S. Coherent expanded aerogels and jellies[J]. Nature,1931,127(3211):741-741.
    [47] Karout A, Buisson P, Perrard A, et al. Shaping and mechanical reinforcement of silica aerogel biocatalysts with ceramic fiber felts[J]. Journal of Sol-Gel Science and Technology,2005,36(2):163-171. doi: 10.1007/s10971-005-5288-z
    [48] Jiang J, Zhang Q, Zhan X, et al. A multifunctional gelatin-based aerogel with superior pollutants adsorption, oil/water separation and photocatalytic properties[J]. Chemical Engineering Journal,2019,358:1539-1551. doi: 10.1016/j.cej.2018.10.144
    [49] Yang S, Shen C, Chen L, et al. Vapor–liquid deposition strategy to prepare superhydrophobic and superoleophilic graphene aerogel for oil–water separation[J]. ACS Applied Nano Materials,2018,1(2):531-540. doi: 10.1021/acsanm.7b00027
    [50] Li Y, Zhang H, Ma C, et al. Durable, cost-effective and superhydrophilic chitosan-alginate hydrogel-coated mesh for efficient oil/water separation[J]. Carbohydrate Polymers,2019,226:115279. doi: 10.1016/j.carbpol.2019.115279
    [51] Li R, Chen C, Li J, et al. A facile approach to superhydrophobic and superoleophilic graphene/polymer aerogels[J]. Journal of Materials Chemistry A,2014,2(9):3057. doi: 10.1039/c3ta14262k
    [52] Zhan C, Jana S C. Shrinkage reduced polyimide-graphene oxide composite aerogel for oil absorption[J]. Microporous and Mesoporous Materials,2020,307:110501-110510. doi: 10.1016/j.micromeso.2020.110501
    [53] Gupta S, Tai N H. Carbon materials as oil sorbents: A review on the synthesis and performance[J]. Journal of Materials Chemistry A,2016,4(5):1550-1565. doi: 10.1039/C5TA08321D
    [54] Chen C, Li F, Zhang Y, et al. Compressive, ultralight and fire-resistant lignin-modified graphene aerogels as recyclable absorbents for oil and organic solvents[J]. Chemical Engineering Journal,2018,350:173-180. doi: 10.1016/j.cej.2018.05.189
    [55] Chatterjee S, Ke W T, Liao Y C. Elastic nanocellulose/graphene aerogel with excellent shape retention and oil absorption selectivity[J]. Journal of the Taiwan Institute of Chemical Engineers,2020,111:261-269. doi: 10.1016/j.jtice.2020.04.020
    [56] Zhou L, Zhai S, Chen Y, et al. Anisotropic cellulose nanofibers/polyvinyl alcohol/graphene aerogels fabricated by directional freeze-drying as effective oil adsorbents[J]. Polymers,2019,11(4):712-720. doi: 10.3390/polym11040712
    [57] Ha H, Shanmuganathan K, Ellison C J. Mechanically stable thermally crosslinked poly(acrylic acid)/reduced graphene oxide aerogels[J]. ACS Applied Materials & Interfaces,2015,7(11):6220-6229.
    [58] Zhou L, Xu Z. Ultralight, highly compressible, hydrophobic and anisotropic lamellar carbon aerogels from graphene/polyvinyl alcohol/cellulose nanofiber aerogel as oil removing absorbents[J]. Journal of Hazardous Materials,2020,388:121804. doi: 10.1016/j.jhazmat.2019.121804
    [59] Li H, Liu L, Yang F. Covalent assembly of 3D graphene/polypyrrole foams for oil spill cleanup[J]. Journal of Materials Chemistry A,2013,1(10):3446-3452. doi: 10.1039/c3ta00166k
    [60] Xia C, Li Y, Fei T, et al. Facile one-pot synthesis of superhydrophobic reduced graphene oxide-coated polyurethane sponge at the presence of ethanol for oil-water separation[J]. Chemical Engineering Journal,2018,345:648-658. doi: 10.1016/j.cej.2018.01.079
    [61] Kong Z, Wang J, Lu X, et al. In situ fastening graphene sheets into a polyurethane sponge for the highly efficient continuous cleanup of oil spills[J]. Nano Research,2017,10(5):1756-1766. doi: 10.1007/s12274-017-1484-8
    [62] Oribayo O, Feng X, Rempel G L, et al. Synthesis of lignin-based polyurethane/graphene oxide foam and its application as an absorbent for oil spill clean-ups and recovery[J]. Chemical Engineering Journal,2017,323:191-202. doi: 10.1016/j.cej.2017.04.054
    [63] Periasamy A P, Wu W P, Ravindranath R, et al. Polymer/reduced graphene oxide functionalized sponges as superabsorbents for oil removal and recovery[J]. Marine Pollution Bulletin,2017,114(2):888-895. doi: 10.1016/j.marpolbul.2016.11.005
    [64] Zhao J, Chen H, Ye H, et al. Poly(dimethylsiloxane)/graphene oxide composite sponge: A robust and reusable adsorbent for efficient oil/water separation[J]. Soft Matter,2019,15(45):9224-9232. doi: 10.1039/C9SM01984G
    [65] Abdel Hakim A A, Nassar M, Emam A, et al. Preparation and characterization of rigid polyurethane foam prepared from sugar-cane bagasse polyol[J]. Materials Chemistry and Physics,2011,129(1-2):301-307. doi: 10.1016/j.matchemphys.2011.04.008
    [66] Jun Y S, Park M G, Um J G, H, et al. The conductivity of polydimethylsiloxane/graphene nano-ribbon foam composite with elongation[J]. Carbon,2020,162(1):328-338.
    [67] Kim Y S, Davis R, Cain A A, et al. Development of layer-by-layer assembled carbon nanofiber-filled coatings to reduce polyurethane foam flammability[J]. Polymer,2011,52(13):2847-2855. doi: 10.1016/j.polymer.2011.04.023
    [68] Rizvi A, Chu R K M, Lee J H, et al. Superhydrophobic and oleophilic open-cell foams from fibrillar blends of polypropylene and polytetrafluoroethylene[J]. ACS Applied Materials & Interfaces,2014,6(23):21131-21140.
    [69] Yu L, Hao G, Xiao L, et al. Robust magnetic polystyrene foam for high efficiency and removal oil from water surface[J]. Separation and Purification Technology,2017,173:121-128. doi: 10.1016/j.seppur.2016.09.022
    [70] Zhao Y, Liu J, Hu Y, et al. Highly compression-tolerant supercapacitor based on polypyrrole-mediated graphene foam electrodes[J]. Advanced Materials,2013,25(4):591-595. doi: 10.1002/adma.201203578
    [71] Yang J C, Cao Z J, Wang Y Z, et al. Ammonium polyphosphate-based nanocoating for melamine foam towards high flame retardancy and anti-shrinkage in fire[J]. Polymer,2015,66:86-93. doi: 10.1016/j.polymer.2015.04.022
    [72] Meng Y, Young T M, Liu P, et al. Ultralight carbon aerogel from nanocellulose as a highly selective oil absorption material[J]. Cellulose,2015,22(1):435-447. doi: 10.1007/s10570-014-0519-5
    [73] Su C, Yang H, Zhao H, et al. Recyclable and biodegradable superhydrophobic and superoleophilic chitosan sponge for the effective removal of oily pollutants from water[J]. Chemical Engineering Journal,2017,330:423-432. doi: 10.1016/j.cej.2017.07.157
    [74] Wang Y, Feng Y, Zhang X F, et al. Alginate-based attapulgite foams as efficient and recyclable adsorbents for the removal of heavy metals[J]. Journal of Colloid and Interface Science,2018,514:190-198. doi: 10.1016/j.jcis.2017.12.035
    [75] Feng Z, Odelius K, Hakkarainen M. Tunable chitosan hydrogels for adsorption: Property control by biobased modifiers[J]. Carbohydrate Polymers,2018,196:135-145. doi: 10.1016/j.carbpol.2018.05.029
    [76] Feng Z, Simeone A, Odelius K, et al. Biobased nanographene oxide creates stronger chitosan hydrogels with improved adsorption capacity for trace pharmaceuticals[J]. ACS Sustainable Chemistry & Engineering,2017,5(12):11525-11535.
    [77] Feng Z, Hakkarainen M, Grützmacher H, et al. Photocrosslinked chitosan hydrogels reinforced with chitosan-derived nano-graphene oxide[J]. Macromolecular Chemistry and Physics,2019,220(1):1900174-1900180.
    [78] Sakai K, Kobayashi Y, Saito T, et al. Partitioned airs at microscale and nanoscale: thermal diffusivity in ultrahigh porosity solids of nanocellulose[J]. Scientific Reports,2016,6(1):20434. doi: 10.1038/srep20434
    [79] Feng C, Yi Z, She F, et al. Superhydrophobic and superoleophilic micro-wrinkled reduced graphene oxide as a highly portable and recyclable oil sorbent[J]. ACS Applied Materials & Interfaces,2016,8(15):9977-9985.
    [80] Zhou S, Hao G, Zhou X, et al. One-pot synthesis of robust superhydrophobic, functionalized graphene/polyurethane sponge for effective continuous oil–water separation[J]. Chemical Engineering Journal,2016,302:155-162. doi: 10.1016/j.cej.2016.05.051
    [81] Tuteja A, Choi W, Ma M, et al. Designing superoleophobic surfaces[J]. Science,2007,318(5856):1618-1622. doi: 10.1126/science.1148326
    [82] Zhang L, He Y, Ma L, et al. Hierarchically stabilized PAN/β-FeOOH nanofibrous membrane for efficient water purification with excellent antifouling performance and robust solvent resistance[J]. ACS Applied Materials & Interfaces,2019,11(37):34487-34496.
    [83] Su B, Wang S, Song Y, et al. Utilizing superhydrophilic materials to manipulate oil droplets arbitrarily in water[J]. Soft Matter,2011,7(11):5144. doi: 10.1039/c0sm01480j
    [84] Su B, Wang S, Song Y, et al. A heatable and evaporation-free miniature reactor upon superhydrophobic pedestals[J]. Soft Matter,2012,8(3):631-635. doi: 10.1039/C2SM06356E
    [85] Junaidi N F D, Othman N H, Shahruddin M Z, et al. Fabrication and characterization of graphene oxide–polyethersulfone (GO–PES) composite flat sheet and hollow fiber membranes for oil–water separation[J]. Journal of Chemical Technology & Biotechnology,2020,95(5):1308-1320.
    [86] Huang T, Zhang L, Chen H, et al. Sol–gel fabrication of a non-laminated graphene oxide membrane for oil/water separation[J]. Journal of Materials Chemistry A,2015,3(38):19517-19524. doi: 10.1039/C5TA04471E
    [87] Cai Y, Chen D, Li N, et al. Nanofibrous metal–organic framework composite membrane for selective efficient oil/water emulsion separation[J]. Journal of Membrane Science,2017,543:10-17. doi: 10.1016/j.memsci.2017.08.047
    [88] Massaro M, Colletti C G, Lazzara G, et al. Halloysite nanotubes as support for metal-based catalysts[J]. Journal of Materials Chemistry A,2017,5(26):13276-13293. doi: 10.1039/C7TA02996A
    [89] Zhang J, Pan X, Xue Q, et al. Antifouling hydrolyzed polyacrylonitrile/graphene oxide membrane with spindle-knotted structure for highly effective separation of oil-water emulsion[J]. Journal of Membrane Science,2017,532:38-46. doi: 10.1016/j.memsci.2017.03.004
    [90] Abdalla O, Wahab M A, Abdala A. Mixed matrix membranes containing aspartic acid functionalized graphene oxide for enhanced oil-water emulsion separation[J]. Journal of Environmental Chemical Engineering,2020,8(5):104269. doi: 10.1016/j.jece.2020.104269
    [91] Wang L, Wang Y, Dai J, et al. Coordination-driven interfacial cross-linked graphene oxide-alginate nacre mesh with underwater superoleophobicity for oil-water separation[J]. Carbohydrate Polymers,2021,251:117097. doi: 10.1016/j.carbpol.2020.117097
    [92] Ou X, Yang X, Zheng J, et al. Free-standing graphene oxide–chitin nanocrystal composite membrane for dye adsorption and oil/water separation[J]. ACS Sustainable Chemistry & Engineering,2019,7(15):13379-13390.
    [93] Gao X, Jiang L. Water-repellent legs of water striders[J]. Nature,2004,432(7013):36-36. doi: 10.1038/432036a
    [94] Zhang T, Xiao C, Zhao J, et al. One-step facile fabrication of PVDF/graphene composite nanofibrous membrane with enhanced oil affinity for highly efficient gravity-driven emulsified oil/water separation and selective oil absorption[J]. Separation and Purification Technology,2021,254:117576. doi: 10.1016/j.seppur.2020.117576
    [95] Yuan X, Li W, Liu H, et al. A novel PVDF/graphene composite membrane based on electrospun nanofibrous film for oil/water emulsion separation[J]. Composites Communications,2016,2:5-8. doi: 10.1016/j.coco.2016.10.001
    [96] Li X, Rui M, Song J, et al. Carbon and graphene quantum dots for optoelectronic and energy devices: A review[J]. Advanced Functional Materials,2015,25(31):4929-4947. doi: 10.1002/adfm.201501250
    [97] Zhu J, Zhang S, Wang L, et al. Engineering cross-linking by coal-based graphene quantum dots toward tough, flexible, and hydrophobic electrospun carbon nanofiber fabrics[J]. Carbon,2018,129:54-62. doi: 10.1016/j.carbon.2017.11.071
    [98] Xue C H, Ji P T, Zhang P, et al. Fabrication of superhydrophobic and superoleophilic textiles for oil–water separation[J]. Applied Surface Science,2013,284:464-471. doi: 10.1016/j.apsusc.2013.07.120
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  1857
  • HTML全文浏览量:  946
  • PDF下载量:  238
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-17
  • 修回日期:  2021-03-16
  • 网络出版日期:  2021-05-12
  • 刊出日期:  2021-04-01

目录

    /

    返回文章
    返回