留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress on nanoporous carbons produced by the carbonization of metal organic frameworks

ZHANG Qian XUE Chun-feng WANG Jin-xin HUANG Rui-chao HAO Xiao-gang LI Kai-xi

张潜, 薛春峰, 王金鑫, 黄瑞超, 郝晓刚, 李开喜. MOF材料自模板炭化制备纳米多孔炭的研究进展[J]. 新型炭材料, 2021, 36(2): 322-335. doi: 10.1016/S1872-5805(21)60023-14
引用本文: 张潜, 薛春峰, 王金鑫, 黄瑞超, 郝晓刚, 李开喜. MOF材料自模板炭化制备纳米多孔炭的研究进展[J]. 新型炭材料, 2021, 36(2): 322-335. doi: 10.1016/S1872-5805(21)60023-14
ZHANG Qian, XUE Chun-feng, WANG Jin-xin, HUANG Rui-chao, HAO Xiao-gang, LI Kai-xi. Research progress on nanoporous carbons produced by the carbonization of metal organic frameworks[J]. NEW CARBOM MATERIALS, 2021, 36(2): 322-335. doi: 10.1016/S1872-5805(21)60023-14
Citation: ZHANG Qian, XUE Chun-feng, WANG Jin-xin, HUANG Rui-chao, HAO Xiao-gang, LI Kai-xi. Research progress on nanoporous carbons produced by the carbonization of metal organic frameworks[J]. NEW CARBOM MATERIALS, 2021, 36(2): 322-335. doi: 10.1016/S1872-5805(21)60023-14

MOF材料自模板炭化制备纳米多孔炭的研究进展

doi: 10.1016/S1872-5805(21)60023-14
详细信息
  • 中图分类号: 0614

Research progress on nanoporous carbons produced by the carbonization of metal organic frameworks

Funds: This work is supported by the Applied Basic Research Project of Shanxi Province (No.201801D121060, 201901D111083)
More Information
  • 摘要: 纳米多孔炭材料具有高的比表面积、良好的热稳定性和化学稳定性等优点,广泛应用于气体吸附、催化和电化学等领域。尽管目前已做了大量的工作,但是以自模板策略制备纳米多孔炭材料仍存在挑战。结构多样可裁的金属有机骨架(MOF)材料具有规则可调的孔径、高的孔隙率和比表面积等优点,已被证明是制备功能化纳米多孔炭材料的理想前驱体。本文综述了近年来MOF自模板炭化制备纳米多孔炭材料的研究进展,重点介绍以炭化不同的MOF-客体类型为途径获得的多孔炭材料。这将有助于进一步定向开发功能化的新型炭材料,以优化其在更广泛应用领域的性能。
  • FIG. 570.  FIG. 570.

    FIG. 570.. 

    Figure  1.  Scheme of the synthesis of NPC via direct carbonization of ZIF-8[40]. Reprinted with permission.

    Figure  2.  Scheme of the synthesis of N-doped CNT-assembled hollow dodecahedra from ZIF-67[42]. Reprinted with permission.

    Figure  3.  Scheme of the synthesis of graphitic carbon networks through size-reduction of ZIF-67 crystals[43]. Reprinted with permission.

    Figure  4.  Scheme of the synthesis of core-shell ZIF-8@ZIF-67 nanocrystal and NC@GC[46]. Reprinted with permission.

    Figure  5.  Scheme of the synthesis process for NPC[47]. Reprinted with permission.

    Figure  6.  Scheme of the synthesis of hollow carbon nanobubble[56]. Reprinted with permission.

    Figure  7.  Scheme of the synthesis of N-doped hollow porous carbon[36]. Reprinted with permission.

    Figure  8.  Scheme of the synthesis of N,P co-doped carbon nanocage[59]. Reprinted with permission.

    Figure  9.  Scheme of the synthesis of NPC fibers[62]. Reprinted with permission.

    Figure  10.  Scheme of the synthesis of carbon nano framework[35]. Reprinted with permission.

    Figure  11.  Scheme of thermal exfoliation of Zn-ZIF-L to produce N-doped graphene nanomesh[80]. Reprinted with permission.

  • [1] Zhang S, Mandai T, Ueno K, et al. Hydrogen-bonding supramolecular protic salt as an “all-in-one” precursor for nitrogen-doped mesoporous carbons for CO2 adsorption[J]. Nano Energy,2015,13:376-386. doi: 10.1016/j.nanoen.2015.03.006
    [2] Chen Y, Ji S, Wang Y, et al. Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction[J]. Angewandte Chemie International Edition,2017,56(24):6937-6941. doi: 10.1002/anie.201702473
    [3] Lin T, Chen I W, Liu F, et al. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage[J]. Science,2015,350(6267):1508-1513. doi: 10.1126/science.aab3798
    [4] Hu X, Sun X, Yoo S J, et al. Nitrogen-rich hierarchically porous carbon as a high-rate anode material with ultra-stable cyclability and high capacity for capacitive sodium-ion batteries[J]. Nano Energy,2019,56:828-839. doi: 10.1016/j.nanoen.2018.11.081
    [5] Yarlagadda V, Carpenter M K, Moylan T E, et al. Boosting fuel cell performance with accessible carbon mesopores[J]. ACS Energy Letters,2018,3(3):618-621. doi: 10.1021/acsenergylett.8b00186
    [6] Lin J, Peng Z, Liu Y, et al. Laser-induced porous graphene films from commercial polymers[J]. Nature Communications,2014,5(1):1-8.
    [7] Fagan J A, Hároz E H, Ihly R, et al. Isolation of > 1 nm diameter single-wall carbon nanotube species using aqueous two-phase extraction[J]. ACS Nano,2015,9(5):5377-5390. doi: 10.1021/acsnano.5b01123
    [8] Luo W, Zhao T, Li Y, et al. A micelle fusion-aggregation assembly approach to mesoporous carbon materials with rich active sites for ultrasensitive ammonia sensing[J]. Journal of the American Chemical Society,2016,138(38):12586-12595. doi: 10.1021/jacs.6b07355
    [9] Li M, Zhang Y, Wang X, et al. Gas pickering emulsion templated hollow carbon for high rate performance lithium sulfur batteries[J]. Advanced Functional Materials,2016,26(46):8408-8417. doi: 10.1002/adfm.201603241
    [10] Lakhi K S, Park D H, Al Bahily K, et al. Mesoporous carbon nitrides: Synthesis, functionalization and applications[J]. Chemical Society Reviews,2017,46(1):72-101. doi: 10.1039/C6CS00532B
    [11] Sua J, Fang C, Yang M, et al. A controllable soft-templating approach to synthesize mesoporous carbon microspheres derived from d-xylose via hydrothermal method[J]. Journal of Materials Science & Technology,2020,38(3):183-188.
    [12] Liang T, Wei R, Shen P, et al. Hierarchical glucose-based carbons prepared by soft templating and sol-gel process for CO2 capture[J]. Journal of Power Sources,2017,24(6):1637-1645.
    [13] Xue X, Yang H, Yang T, et al. N, P-coordinated fullerene-like carbon nanostructures with dual active centers toward highly-efficient multi-functional electrocatalysis for CO2RR, ORR and Zn-air battery[J]. Journal of Materials Chemistry A,2017,7(25):15271-15277.
    [14] He Y, Zhuang X, Lei C, et al. Porous carbon nanosheets: Synthetic strategies and electrochemical energy related applications[J]. Nano Today,2019,24:103-119. doi: 10.1016/j.nantod.2018.12.004
    [15] Osmieri L, Escudero-Cid R, Armandi M, et al. Fe-N/C catalysts for oxygen reduction reaction supported on different carbonaceous materials. Performance in acidic and alkaline direct alcohol fuel cells[J]. Applied Catalysis B: Environmental,2017,205:637-653. doi: 10.1016/j.apcatb.2017.01.003
    [16] Yao Y, Chen Z, Zhang A, et al. Surface-coating synthesis of nitrogen-doped inverse opal carbon materials with ultrathin micro/mesoporous graphene-like walls for oxygen reduction and supercapacitors[J]. Journal of Materials Chemistry A,2017,5(48):25237-25248. doi: 10.1039/C7TA08354H
    [17] Ng W, Yang Y, Veen K V D, et al. Enhancing the performance of 3D porous N-doped carbon in oxygen reduction reaction and supercapacitor via boosting the mesomacropore interconnectivity using the “exsolved” dual-template[J]. Carbon,2018,129:293-300. doi: 10.1016/j.carbon.2017.12.019
    [18] Zeng H, Wang W, Li J, et al. In situ generated dual-template method for Fe/N/S co-doped hierarchically porous honeycomb carbon for high-performance oxygen reduction[J]. ACS Applied Materials & Interfaces,2018,10(10):8721-8729.
    [19] Moghadam P Z, Li A, Wiggin S B, et al. Development of a cambridge structural database subset: A collection of metal-organic frameworks for past, present and future[J]. Chemistry of Materials,2017,29(7):2618-2625. doi: 10.1021/acs.chemmater.7b00441
    [20] Huang Y B, Liang J, Wang X S, et al. Multifunctional metal-organic framework catalysts: Synergistic catalysis and tandem reactions[J]. Chemical Society Reviews,2017,46(1):126-157. doi: 10.1039/C6CS00250A
    [21] Wang Z S, Li M, Peng Y L, et al. An ultrastable metal azolate framework with binding pockets for optimal carbon dioxide capture[J]. Angewandte Chemie International Edition,2019,58(45):16071-16076. doi: 10.1002/anie.201909046
    [22] Li L, Lin R B, Krishna R, et al. Ethane/ethylene separation in a metal-organic framework with iron-peroxo sites[J]. Science,2018,362(6413):443-446. doi: 10.1126/science.aat0586
    [23] Yang Q, Xu Q, Jiang H L. Metal-organic frameworks meet metal nanoparticles: Synergistic effect for enhanced catalysis[J]. Chemical Society Reviews,2017,46(15):4774-4808. doi: 10.1039/C6CS00724D
    [24] Mingabudinova L R, Vinogradov V V, Milichko V A, et al. Metal-organic frameworks as competitive materials for non-linear optics[J]. Chemical Society Reviews,2016,45(19):5408-5431. doi: 10.1039/C6CS00395H
    [25] Sheberla D, Bachman J C, Elias J S, et al. Conductive MOF electrodes for stable supercapacitors with high areal capacitance[J]. Nature Materials,2017,16(2):220-224. doi: 10.1038/nmat4766
    [26] Minguez Espallargas G, Coronado E. Magnetic functionalities in MOFs: From the framework to the pore[J]. Chemical Society Reviews,2018,47(2):533-557. doi: 10.1039/C7CS00653E
    [27] Wu M X, Yang Y W. Metal-organic framework (MOF)-based drug/cargo delivery and cancer therapy[J]. Advanced Materials,2017,29(23):1606134. doi: 10.1002/adma.201606134
    [28] Dolgopolova E A, Rice A M, Martin C R, et al. Photochemistry and photophysics of MOFs: Steps towards MOF-based sensing enhancements[J]. Chemical Society Reviews,2018,47(13):4710-4728. doi: 10.1039/C7CS00861A
    [29] Zhou H C, Long J R, Yaghi O M. Introduction to metal-organic frameworks[J]. Chemical Reviews,2012,112(2):673-674. doi: 10.1021/cr300014x
    [30] Sherry B D, Fürstner A. The promise and challenge of iron-catalyzed cross coupling[J]. Accounts of Chemical Research,2008,41(11):1500-1511. doi: 10.1021/ar800039x
    [31] Sun J K, Xu Q. Functional materials derived from open framework templates/precursors: Synthesis and applications[J]. Energy & Environmental Science,2014,7(7):2071-2100.
    [32] Yang L, Zeng X, Wang W, et al. Recent progress in MOF-derived, heteroatom-doped porous carbons as highly efficient electrocatalysts for oxygen reduction reaction in fuel cells[J]. Advanced Functional Materials,2017,28(7):1704537.
    [33] Ren Q, Wang H, Lu X F, et al. Recent progress on MOF-derived heteroatom-doped carbon-based electrocatalysts for oxygen reduction reaction[J]. Advanced Science,2018,5(3):1700515. doi: 10.1002/advs.201700515
    [34] Lai Q, Zhao Y, Liang Y, et al. In situ confinement pyrolysis transformation of ZIF-8 to nitrogen-enriched meso-microporous carbon frameworks for oxygen reduction[J]. Advanced Functional Materials,2016,26(45):8334-8344. doi: 10.1002/adfm.201603607
    [35] Shang L, Yu H, Huang X, et al. Well-dispersed ZIF-derived Co, N-co-doped carbon nanoframes through mesoporous-silica-protected carbonization as efficient oxygen reduction electrocatalysts[J]. Advanced Materials,2016,28(8):1668-1674. doi: 10.1002/adma.201505045
    [36] Yang H, Bradley S J, Chan A, et al. Catalytically active bimetallic nanoparticles supported on porous carbon capsules derived from metal-organic framework composites[J]. Journal of the American Chemical Society,2016,138(36):11872-11881. doi: 10.1021/jacs.6b06736
    [37] Yang S J, Kim T, Im J H, et al. MOF-derived hierarchically porous carbon with exceptional porosity and hydrogen storage capacity[J]. Chemistry of Materials,2012,24(3):464-470. doi: 10.1021/cm202554j
    [38] Hu M, Reboul J, Furukawa S, et al. Direct carbonization of Al-based porous coordination polymer for synthesis of nanoporous carbon[J]. Journal of the American Chemical Society,2012,134(6):2864-2867. doi: 10.1021/ja208940u
    [39] Lim S, Suh K, Kim Y, et al. Porous carbon materials with a controllable surface area synthesized from metal-organic frameworks[J]. Chemical Communications,2012,48(60):7447-7449. doi: 10.1039/c2cc33439a
    [40] Chaikittisilp W, Hu M, Wang H, et al. Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes[J]. Chemical Communications,2012,48(58):7259-7261. doi: 10.1039/c2cc33433j
    [41] Xia B Y, Yan Y, Li N, et al. A metal-organic framework-derived bifunctional oxygen electrocatalyst[J]. Nature Energy,2016,1(1):1-8.
    [42] Meng J, Niu C, Xu L, et al. General oriented formation of carbon nanotubes from metal-organic frameworks[J]. Journal of the American Chemical Society,2017,139(24):8212-8221. doi: 10.1021/jacs.7b01942
    [43] Zhang W, Jiang X, Wang X, et al. Spontaneous weaving of graphitic carbon networks synthesized by pyrolysis of ZIF-67 crystals[J]. Angewandte Chemie International Edition,2017,56(29):8435-8440. doi: 10.1002/anie.201701252
    [44] Pachfule P, Shinde D, Majumder M, et al. Fabrication of carbon nanorods and graphene nanoribbons from a metal-organic framework[J]. Nature Chemistry,2016,8(7):718-724. doi: 10.1038/nchem.2515
    [45] Tang J, Salunkhe R R, Zhang H, et al. Bimetallic metal-organic frameworks for controlled catalytic graphitization of nanoporous carbons[J]. Scientific Reports,2016,6:30295. doi: 10.1038/srep30295
    [46] Tang J, Salunkhe R R, Liu J, et al. Thermal conversion of core-shell metal-organic frameworks: A new method for selectively functionalized nanoporous hybrid carbon[J]. Journal of the American Chemical Society,2015,137(4):1572-1580. doi: 10.1021/ja511539a
    [47] Liu B, Shioyama H, Akita T, et al. Metal-organic framework as a template for porous carbon synthesis[J]. Journal of the American Chemical Society,2008,130:5390-5391. doi: 10.1021/ja7106146
    [48] Liu B, Shioyama H, Jiang H, et al. Metal-organic framework (MOF) as a template for syntheses of nanoporous carbons as electrode materials for supercapacitor[J]. Carbon,2010,48(2):456-463. doi: 10.1016/j.carbon.2009.09.061
    [49] Jiang H L, Liu B, Lan Y Q, et al. From metal-organic framework to nanoporous carbon: Toward a very high surface area and hydrogen uptake[J]. Journal of the American Chemical Society,2011,133(31):11854-11857. doi: 10.1021/ja203184k
    [50] Zhang P, Sun F, Shen Z, et al. ZIF-derived porous carbon: A promising supercapacitor electrode material[J]. Journal of Materials Chemistry A,2014,2(32):12873-12880. doi: 10.1039/C4TA00475B
    [51] Hu J, Wang H, Gao Q, et al. Porous carbons prepared by using metal-organic framework as the precursor for supercapacitors[J]. Carbon,2010,48(12):3599-3606. doi: 10.1016/j.carbon.2010.06.008
    [52] Li J, Chen Y, Tang Y, et al. Metal-organic framework templated nitrogen and sulfur co-doped porous carbons as highly efficient metal-free electrocatalysts for oxygen reduction reactions[J]. Journal of Materials Chemistry A,2014,2(18):6316-6319. doi: 10.1039/C3TA15335E
    [53] Aijaz A, Fujiwara N, Xu Q. From metal-organic framework to nitrogen-decorated nanoporous carbons: High CO2 uptake and efficient catalytic oxygen reduction[J]. Journal of the American Chemical Society,2014,136(19):6790-6793. doi: 10.1021/ja5003907
    [54] Li J S, Li S L, Tang Y J, et al. Heteroatoms ternary-doped porous carbons derived from MOFs as metal-free electrocatalysts for oxygen reduction reaction[J]. Scientific Reports,2014,4:5130.
    [55] Lai Y, Gan Y, Zhang Z, et al. Metal-organic frameworks-derived mesoporous carbon for high performance lithium–selenium battery[J]. Electrochimica Acta,2014,146:134-141. doi: 10.1016/j.electacta.2014.09.045
    [56] Zhang W, Jiang X, Zhao Y, et al. Hollow carbon nanobubbles: monocrystalline MOF nanobubbles and their pyrolysis[J]. Chemical Science,2017,8(5):3538-3546. doi: 10.1039/C6SC04903F
    [57] Wang J, Luo X, Young C, et al. A glucose-assisted hydrothermal reaction for directly transforming metal-organic frameworks into hollow carbonaceous materials[J]. Chemistry of Materials,2018,30(13):4401-4408. doi: 10.1021/acs.chemmater.8b01792
    [58] Wang X, Na Z, Yin D, et al. Phytic acid-assisted formation of hierarchical porous CoP/C nanoboxes for enhanced lithium storage and hydrogen generation[J]. ACS Nano,2018,12(12):12238-12246. doi: 10.1021/acsnano.8b06039
    [59] Kale V S, Hwang M, Chang H, et al. Microporosity-controlled synthesis of heteroatom codoped carbon nanocages by Wrap-Bake-sublime approach for flexible all-solid-state-supercapacitors[J]. Advanced Functional Materials,2018,28(37):1803786. doi: 10.1002/adfm.201803786
    [60] Yang D H, Kong L, Zhong M, et al. Metal-organic gel-derived FexOy/Nitrogen-doped carbon films for enhanced lithium storage[J]. Small,2019,15(3):1804058. doi: 10.1002/smll.201804058
    [61] Xue J, Wu T, Dai Y, et al. Electrospinning and electrospun nanofibers: methods, materials, and applications[J]. Chemical Reviews,2019,119(8):5298-5415. doi: 10.1021/acs.chemrev.8b00593
    [62] Wang C, Liu C, Li J, et al. Electrospun metal-organic framework derived hierarchical carbon nanofibers with high performance for supercapacitors[J]. Chemical Communications,2017,53(10):1751-1754. doi: 10.1039/C6CC09832K
    [63] Chen L F, Lu Y, Yu L, et al. Designed formation of hollow particle-based nitrogen-doped carbon nanofibers for high-performance supercapacitors[J]. Energy & Environmental Science,2017,10(8):1777-1783.
    [64] Chen Y, Li X, Park K, et al. Nitrogen-doped carbon for sodium-ion battery anode by self-etching and graphitization of bimetallic MOF-based composite[J]. Chem,2017,3(1):152-163. doi: 10.1016/j.chempr.2017.05.021
    [65] He Y, Hwang S, Cullen D A, et al. Highly active atomically dispersed CoN4 fuel cell cathode catalysts derived from surfactant-assisted MOFs: Carbon-shell confinement strategy[J]. Energy & Environmental Science,2019,12(1):250-260.
    [66] Meng Y, Wang G H, Bernt S, et al. Crystal-like microporous hybrid solid nanocast from Cr-MIL-101[J]. Chemical Communications,2011,47(37):10479-10481. doi: 10.1039/c1cc13699b
    [67] Deng X, Li J, Zhu S, et al. Boosting the capacitive storage performance of MOF-derived carbon frameworks via structural modulation for supercapacitors[J]. Energy Storage Materials,2019,23:491-498. doi: 10.1016/j.ensm.2019.04.015
    [68] Ni D, Jiang D, Ehlerding E B, et al. Radiolabeling silica-based nanoparticles via coordination chemistry: Basic principles, strategies and applications[J]. Accounts of Chemical Research,2018,51(3):778-788. doi: 10.1021/acs.accounts.7b00635
    [69] Croissant J G, Fatieiev Y, Khashab N M. Degradability and clearance of silicon, organosilica, silsesquioxane, silica mixed oxide, and mesoporous silica nanoparticles[J]. Advanced Materials,2017,29(9):1604634. doi: 10.1002/adma.201604634
    [70] Li Z, Zeng H C. Armored MOFs: Enforcing soft microporous MOF nanocrystals with hard mesoporous silica[J]. Journal of the American Chemical Society,2014,136(15):5631-5639. doi: 10.1021/ja409675j
    [71] Yoon S B, Sohn K, Kim J Y, et al. Fabrication of carbon capsules with hollow macroporous core/mesoporous shell structures[J]. Advanced Materials,2002,14(1):19-21. doi: 10.1002/1521-4095(20020104)14:1<19::AID-ADMA19>3.0.CO;2-X
    [72] Liu C, Huang X, Wang J, et al. Hollow mesoporous carbon nanocubes: Rigid-Interface-Induced outward contraction of metal-organic frameworks[J]. Advanced Functional Materials,2018,28(6):1705253. doi: 10.1002/adfm.201705253
    [73] Zhu Y, Murali S, Stoller M D, et al. Carbon-based supercapacitors produced by activation of graphene[J]. Science,2011,332(6037):1537-1541. doi: 10.1126/science.1200770
    [74] Tai Z, Zhang Q, Liu Y, et al. Activated carbon from the graphite with increased rate capability for the potassium ion battery[J]. Carbon,2017,123:54-61. doi: 10.1016/j.carbon.2017.07.041
    [75] Zou K, Deng Y, Chen J, et al. Hierarchically porous nitrogen-doped carbon derived from the activation of agriculture waste by potassium hydroxide and urea for high-performance supercapacitors[J]. Journal of Power Sources,2018,378:579-588. doi: 10.1016/j.jpowsour.2017.12.081
    [76] Almasoudi A, Mokaya R. Preparation and hydrogen storage capacity of templated and activated carbons nanocast from commercially available zeolitic imidazolate framework[J]. Journal of Materials Chemistry,2012,22(1):146-152. doi: 10.1039/C1JM13314D
    [77] Wang T, Kim H K, Liu Y, et al. Bottom-up formation of carbon-based structures with multilevel hierarchy from MOF-guest polyhedra[J]. Journal of the American Chemical Society,2018,140(19):6130-6136. doi: 10.1021/jacs.8b02411
    [78] Qian Y, An T, Birgersson K E, et al. Web-like interconnected carbon networks from NaCl-assisted pyrolysis of ZIF-8 for highly efficient oxygen reduction catalysis[J]. Small,2018,14(16):1704169. doi: 10.1002/smll.201704169
    [79] Niu W, Yang Y. Amorphous MOF introduced N-doped graphene: an efficient and versatile electrocatalyst for zinc-air battery and water splitting[J]. ACS Applied Energy Materials,2018,1(6):2440-2445. doi: 10.1021/acsaem.8b00594
    [80] Xia W, Tang J, Li J, et al. Defect-rich graphene nanomesh produced by thermal exfoliation of metal-organic frameworks for the oxygen reduction reaction[J]. Angewandte Chemie International Edition,2019,58(38):13354-13359. doi: 10.1002/anie.201906870
    [81] Zhong S, Zhan C, Cao D. Zeolitic imidazolate framework-derived nitrogen-doped porous carbons as high performance supercapacitor electrode materials[J]. Carbon,2015,85:51-59. doi: 10.1016/j.carbon.2014.12.064
    [82] Wan L, Shamsaei E, Easton C D, et al. ZIF-8 derived nitrogen-doped porous carbon/carbon nanotube composite for high-performance supercapacitor[J]. Carbon,2017,121:330-336. doi: 10.1016/j.carbon.2017.06.017
    [83] Wei J, Hu Y, Liang Y, et al. Graphene oxide/core-shell structured metal-organic framework nano-sandwiches and their derived cobalt/N-doped carbon nanosheets for oxygen reduction reactions[J]. Journal of Materials Chemistry A,2017,5(21):10182-10189. doi: 10.1039/C7TA00276A
    [84] Li C, Hu C, Zhao Y, et al. Decoration of graphene network with metal–organic frameworks for enhanced electrochemical capacitive behavior[J]. Carbon,2014,78:231-242. doi: 10.1016/j.carbon.2014.06.076
    [85] Secchi E, Marbach S, Nigues A, et al. Massive radius-dependent flow slippage in carbon nanotubes[J]. Nature,2016,537(7619):210-213. doi: 10.1038/nature19315
    [86] Liu Y, Shen Y, Sun L, et al. Elemental superdoping of graphene and carbon nanotubes[J]. Nature Communications,2016,7(1):1-9.
    [87] He X, Gao W, Xie L, et al. Wafer-scale monodomain films of spontaneously aligned single-walled carbon nanotubes[J]. Nature Nanotechnology,2016,11(7):633-638. doi: 10.1038/nnano.2016.44
    [88] Voiry D, Yang J, Kupferberg J, et al. High-quality graphene via microwave reduction of solution-exfoliated graphene oxide[J]. Science,2016,353(6306):1413-1416. doi: 10.1126/science.aah3398
    [89] Abraham J, Vasu K S, Williams C D, et al. Tunable sieving of ions using graphene oxide membranes[J]. Nature Nanotechnology,2017,12(6):546-550. doi: 10.1038/nnano.2017.21
    [90] Cao Y, Fatemi V, Fang S, et al. Unconventional superconductivity in magic-angle graphene superlattices[J]. Nature,2018,556(7699):43-50. doi: 10.1038/nature26160
    [91] Zhao Y, Liu J, Hu Y, et al. Highly compression-tolerant supercapacitor based on polypyrrole-mediated graphene foam electrodes[J]. Advanced Materials,2013,25(4):591-595. doi: 10.1002/adma.201203578
    [92] Deng X, Zhu S, Li J, et al. Ball-in-cage nanocomposites of metal-organic frameworks and three-dimensional carbon networks: synthesis and capacitive performance[J]. Nanoscale,2017,9(19):6478-6485. doi: 10.1039/C7NR01548H
    [93] Zhu S, Li J, He C, et al. Soluble salt self-assembly-assisted synthesis of three-dimensional hierarchical porous carbon networks for supercapacitors[J]. Journal of Materials Chemistry A,2015,3(44):22266-22273. doi: 10.1039/C5TA04646G
    [94] Deng X, Zhu S, Li J, et al. Bio-inspired three-dimensional carbon network with enhanced mass-transfer ability for supercapacitors[J]. Carbon,2019,143:728-735. doi: 10.1016/j.carbon.2018.11.055
  • 加载中
图(12)
计量
  • 文章访问数:  43
  • HTML全文浏览量:  16
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-10
  • 修回日期:  2021-01-01
  • 网络出版日期:  2021-03-31
  • 刊出日期:  2021-04-01

目录

    /

    返回文章
    返回