留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The preparation and use of γ-graphdiyne, a superb new photoelectrocatalyst

SUN Ting GAO Feng-yu TANG Xiao-long YI Hong-hong YU Qing-jun ZHAO Shun-zheng XIE Xi-zhou

孙婷, 高凤雨, 唐晓龙, 易红宏, 于庆君, 赵顺征, 解锡舟. 光电催化新星:γ-石墨双炔的制备和应用[J]. 新型炭材料, 2021, 36(2): 304-321. doi: 10.1016/S1872-5805(21)60023-17
引用本文: 孙婷, 高凤雨, 唐晓龙, 易红宏, 于庆君, 赵顺征, 解锡舟. 光电催化新星:γ-石墨双炔的制备和应用[J]. 新型炭材料, 2021, 36(2): 304-321. doi: 10.1016/S1872-5805(21)60023-17
SUN Ting, GAO Feng-yu, TANG Xiao-long, YI Hong-hong, YU Qing-jun, ZHAO Shun-zheng, XIE Xi-zhou. The preparation and use of γ-graphdiyne, a superb new photoelectrocatalyst[J]. NEW CARBOM MATERIALS, 2021, 36(2): 304-321. doi: 10.1016/S1872-5805(21)60023-17
Citation: SUN Ting, GAO Feng-yu, TANG Xiao-long, YI Hong-hong, YU Qing-jun, ZHAO Shun-zheng, XIE Xi-zhou. The preparation and use of γ-graphdiyne, a superb new photoelectrocatalyst[J]. NEW CARBOM MATERIALS, 2021, 36(2): 304-321. doi: 10.1016/S1872-5805(21)60023-17

光电催化新星:γ-石墨双炔的制备和应用

doi: 10.1016/S1872-5805(21)60023-17
详细信息
  • 中图分类号: O643

The preparation and use of γ-graphdiyne, a superb new photoelectrocatalyst

Funds: National Natural Science Foundation of China (51808037, 21806009); China Postdoctoral Fund (2018M631344, 2019T120049)
More Information
  • 摘要: γ-石墨双炔(γ-graphdiyne,简称GDY)是一种由sp和sp2杂化碳组成的高度共轭全碳材料,其独特的有序孔道、非均匀的电子结构和易于调谐的本征带隙,为制备高活性光电催化剂开辟了广阔的探索空间。本文总结了GDY的特性,合成策略和在光电催化领域中的应用,并给出了目前研究中存在的问题和未来技术发展的可能方向。
  • FIG. 569.  FIG. 569.

    FIG. 569.. 

    Figure  1.  Annual publications of GDY applied in photoelectrocatalysis (from web of science).

    Figure  2.  A ball-and-stick model of GDY.

    Figure  3.  (a) Experimental and theoretical UV-vis-NIR absorbance of GDY[22], (b) UV-vis spectra of GDY nanowalls and HEB[31] and (c) UV-vis-NIR absorbance spectrum and the Tauc plot corresponding to an optical band gap of 1.48 eV[32]. Reprinted with permission.

    Figure  4.  The notable features of GDY benefiting photoelectrocatalysis.

    Figure  5.  Classification of GDY preparation methods according to the phase states of catalysts and precursors.

    Figure  6.  Growth on Cu substrates[14]:(a) schematic diagram of coupling reaction on Cu substrates, (b) the optical image and (c) the SEM image of GDY, (d) the profile of the GDY film height by AFM, (e) Raman spectra of the GDY film on three positions and (f) nnarrow scan for element C by XPS. Reprinted with permission.

    Figure  7.  (a) SEM images of the formation process of GDY nanowalls in time series (from left to right, respectively): bare Cu plate before reaction and 8 and 10 h after reaction[31]. (b) SEM images of GDY on Cu substrate from a cross-sectional view[31]. (c) AFM image of an exfoliated sample on Si/SiO2 substrate[31]. (d) Schematic presentation of the synthesis process of GDY through graphene template method[32]. (e) Nitrogen adsorption–desorption isotherms of GDY grown on graphene (red, GDY/G) and GDY[48]. Reprinted with permission.

    Figure  8.  Arbitrary substrate method. (a) schematic illustration of the experimental setup about synthesis of GDY nanowalls on arbitrary substrates via copper envelope catalysis[49], SEM morphology of (b) 1D Si nanowires, (c) 2D Au foil and (d) 3D graphene foam[49] and (e) schematic illustration of the fabrication of GDY on arbitrary substrates with the controlled-release method and the photos of the fabricating process on the glass and silica gel substrates[50]. Reprinted with permission.

    Figure  9.  Liquid/liquid interface assisted method[54]. (a) schematic illustration, (b) photograph of experiment, (c) AFM image of the as-prepared GDY film and (d) SAED pattern of the as-prepared GDY film. Reprinted with permission.

    Figure  10.  Gas-liquid interface assisted synthesis[54]. (a) schematic diagram, (b) AFM image of the as-prepared GDY nanosheets and (c) diagonal and horizontal plots from the 2D grazing incidence wide-angle X-ray scattering (2D GIWAXS) pattern (Orange line, diagonal plots; blue line, horizontal plots). Reprinted with permission.

    Figure  11.  Chemical vapor deposition method[64]. (a) experimental setup of the CVD system for the growth of linked carbon monolayer on silver surface using HEB as a precursor, (b) AFM image of GDY film (thickness: 0.6 nm), (c) TEM image and corresponding SAED pattern of GDY film, (d) Raman spectra of the as-grown ten-layer GDY, (e) high-resolution asymmetric C 1s XPS spectrum of GDY. Reprinted with permission.

    Figure  12.  Explosion approach[66]. (a) schematic illustration, SEM images of GDY powder with different morphologies, (b) GDY nanoribbons, (c) GDY nanochain and (d) 3D GDY framework, and (e) their Raman spectra. Reprinted with permission.

    Figure  13.  The roles of GDY in photoelectrocatalysis.

    Figure  14.  (a) Schematic diagram of the photoelectrochemical cell consisting of the assembled CdSe QDs/GDY photocathode, and corresponding interfacial migration process of the photogenerated excitons[34], (b) LSV scanning from 0.3 to 0.4 V at 2 mV s-1 with light off (black trace) and on (red trace) for the CdSe QDs/GDY photocathode[34], (c) controlled potential electrolysis of the CdSe QDs/GDY photocathode during 12 h test[34], (d) schematic representation of the BiVO4/GDY composite used as a photoanode and its TEM image[49], (e) hole injection yield of BiVO4 and GDY/BiVO4 photoanodes[49] and (f) linear sweep voltammetry scanning for different photocathodes measured under dark and light[73]. Reprinted with permission.

    Figure  15.  (a) Schematic illustration for the possible mechanism of ORR for the NGDY catalyst[81], (b) top view of the optimized configuration for Fe atom adsorption on GDY (Atomic color code: pale blue that is for carbon in the C6 ring with sp2 hybridization, green for carbon in the acetylenic-like rods with sp hybridization and orange for Fe)[83], (c) indicative of single Fe atom anchored on a GDY surface[83], (d) CV responses of the Fe/GDY catalyst (upper panel) and the commercial Pt/C catalyst (lower panel) in N2- (blue line) and O2-saturated (red line) 0.1 mol L−1 KOH solution at ambient temperature[83] and (e) RDE measurements in O2-saturated 0.1 mol L KOH solution for the Fe/GDY catalyst (orange), and the commercial 20wt% Pt/C catalyst (violet)[83]. Reprinted with permission.

    Figure  16.  (a) Schematic illustration, Tafel plot at a sweep rate of 5 mV/s, and HER polarization curve of Cu@GDY/CF[84], (b) HER polarization curves of CoNC/GD and commercial Pt/C (10 wt%) before and after 36000 and 8000 CV scans, respectively, in 1 mol L−1 KOH and (c) before and after 9000 and 8000 CV scans, respectively, in 1 mol L−1 PBS (pH=7)[85], (d) per mass activities of Ni/GD, Fe/GD, and Pt/C (inset: mass activities obtained at overpotentials of 0.05 and 0.20 V)[86], (e) per mass activities of Pd(0)/GDY and Pt/C (inset: mass activity collected at overpotentials of 0.05 and 0.2 V)[87] and (f) corresponding Tafel slopes of several catalysts including Pd(0)/GDY[87]. Reprinted with permission.

    Figure  17.  (a) Schematic diagram of the 3D Cu@GDY/Co electrode[88], (b) LSV curves for the Cu foam, Cu@GDY, and Cu@GDY/Co electrodes in 0.1 mol L−1 KOH[88], (c) tafel plots of the corresponding electrodes[88], (d) a comparison of CoAl-LDH (CO32-) assembled hydrophobic and superhydrophilic GDY electrodes[89], (e) required overpotential to reach 10 mA·cm-2 of the different samples[89] and (f) Tafel plots of the different samples[89]. Reprinted with permission.

    Figure  18.  Polarization curves of for NiCo2S4 NW/GDF, NiCo2S4 NW/CC, GDF, CC, and RuO2 for (a) OER with a scan rate of 5 mV·s−1 and (b) HER with a scan rate of 5 mV·s−1[90]. Polarization curves of samples in 1.0 mol L−1 KOH toward (c) OER and toward (d) HER[91]. Reprinted with permission.

    Table  1.   A brief summary for the calculated bond lengths of GDY (nm).

    AromaticSingleTripleNote
    0.14070.1395a, 0.1340b0.1263MD, AIREBD[15]
    0.14050.1396a, 0.1340b0.1240MD, AIREBO potential[17]
    0.14400.1400a, 0.1341b0.1239DFT, GGA-PBE[18]
    0.14310.1395a, 0.1337b0.1231VASP, GGA-PBE[19]
    a: C(sp2)-C(sp), b: C(sp)-C(sp).
    * The typical lengths for aromatic bond and single bond are about 0.140 and 0.154 nm.
    下载: 导出CSV

    Table  2.   Intrinsic hole/electron mobilities (300 K) and bandgap of Si, monolayer GDY and GR.

    Hole mobility(μh)Electron mobility(μe)Bandgap(Eg)
    Silion0.0480.1351.124
    γ-Graphdiyne1.97a, 1.91b20.81a, 17.22b0.44−1.47[2129]
    Graphene32.17a, 35.12b33.89a, 32.02b0
    a: Zigzag direction, b: Armchair direction.
    μ: 104 cm2 V−1 s−1; Eg: eV
    下载: 导出CSV
  • [1] Wang Q, Lei Y, Wang D, et al. Defect engineering in earth-abundant electrocatalysts for CO2 and N2 reduction[J]. Energy and Environmental Science,2019,12(6):1730-1750. doi: 10.1039/C8EE03781G
    [2] She Z W, Kibsgaard J, Dickens C F, et al. Combining theory and experiment in electrocatalysis: Insights into materials Design[J]. Science,2017,355(6321
    [3] Meng A, Zhang L, Cheng B, et al. Dual Cocatalysts in TiO2 photocatalysis[J]. Advanced Materials,2019,31(30):1-31.
    [4] Zhao S, Wang D W, Amal R, et al. Carbon-based metal-free catalysts for key reactions involved in energy conversion and storage[J]. Advanced Materials,2019,31(9):1-22.
    [5] Lai L, Potts J R, Zhan D, et al. Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction[J]. Energy and Environmental Science,2012,5(7):7936-7942. doi: 10.1039/c2ee21802j
    [6] Yang L, Shui J, Du L, et al. Carbon-based metal-free ORR electrocatalysts for fuel cells: Past, present and future[J]. Advanced Materials,2019,31(13):e1804799.
    [7] Zuo Z, Wang D, Zhang J, et al. Synthesis and applications of graphdiyne-based metal-free catalysts[J]. Advanced Materials,2019,31(13):e1803762.
    [8] Yu H, Xue Y, Li Y. Graphdiyne and its assembly architectures: synthesis, functionalization and applications[J]. Advanced Materials,2019,31(42):1-21.
    [9] Lu X, Han Y, Lu T. Structure characterization and application of graphdiyne in photocatalytic and electrocatalytic reactions[J]. Acta Physico - Chimica Sinica,2018,34(9):1014-1028. doi: 10.3866/PKU.WHXB201801171
    [10] Lu Z, Li S, Lv P, et al. First principles study on the interfacial properties of NM/Graphdiyne (NM = Pd, Pt, Rh and Ir): The implications for NM growing[J]. Applied Surface Science,2016,360:1-7. doi: 10.1016/j.apsusc.2015.10.219
    [11] Du Y, Zhou W, Gao J, et al. Fundament and application of graphdiyne in electrochemical energy[J]. Accounts of Chemical Research,2020
    [12] Huang C S, Li Y L. Structure of 2D graphdiyne and its application in energy fields[J]. Acta Physico - Chimica Sinica,2016,32(6):1314-1329. doi: 10.3866/PKU.WHXB201605035
    [13] Haley M M, Brand S C, Pak J J, et al. Carbon networks based on dehydrobenzoannu- lenes: Synthesis of graphdiyne substructures[J]. Angewandte Chemie-International Edition,1997,36(8):836-838. doi: 10.1002/anie.199708361
    [14] Li G, Li Y, Liu H, et al. Architecture of graphdiyne nanoscale films[J]. Chemical Communications,2010,46(19):3256-3258. doi: 10.1039/b922733d
    [15] Xiao K, Li J, Wu X, et al. Nanoindentation of thin graphdiyne films: Experiments and molecular dynamics simulation[J]. Carbon,2019,144:72-80. doi: 10.1016/j.carbon.2018.12.029
    [16] Zhang H, He X, Zhao M, et al. Tunable hydrogen separation in sp-Sp2 hybridized carbon membranes: A first-principles prediction[J]. Journal of Physical Chemistry C,2012,116(31):16634-16638. doi: 10.1021/jp304908p
    [17] Yang Y, Xu X. Mechanical properties of graphyne and its family-a molecular dynamics investigation[J]. Computational Materials Science,2012,61:83-88. doi: 10.1016/j.commatsci.2012.03.052
    [18] Bai H, Zhu Y, Qiao W, et al. Structures, stabilities and electronic properties of graphdiyne nanoribbons[J]. RSC Advances,2011,1(5):768-775. doi: 10.1039/c1ra00481f
    [19] Pei Y. Mechanical properties of graphdiyne sheet[J]. Physica B: Condensed Matter,2012,407(22):4436-4439. doi: 10.1016/j.physb.2012.07.026
    [20] Ge C, Chen J, Tang S, et al. Review of the electronic, optical and magnetic properties of graphdiyne: From theories to experiments[J]. ACS Applied Materials and Interfaces,2019,11(3):2707-2716. doi: 10.1021/acsami.8b03413
    [21] Enyashin A N, Ivanovskii A L. Graphene allotropes[J]. Physica Status Solidi (B) Basic Research,2011,248(8):1879-1883. doi: 10.1002/pssb.201046583
    [22] Luo G, Qian X, Liu H, et al. Quasiparticle energies and excitonic effects of the two-dimensional carbon allotrope graphdiyne: Theory and experiment[J]. Physical Review B - Condensed Matter and Materials Physics,2011,84(7):1-5.
    [23] Jiao Y, Du A, Hankel M, et al. Graphdiyne: A versatile nanomaterial for electronics and hydrogen purification[J]. Chemical Communications,2011,47(43):11843-11845. doi: 10.1039/c1cc15129k
    [24] Srinivasu K, Ghosh S K. Graphyne and graphdiyne: Promising materials for nanoelectronics and energy storage applications[J]. Journal of Physical Chemistry C,2012,116(9):5951-5956. doi: 10.1021/jp212181h
    [25] Narita N, Nagai S. Optimized geometries and electronic structures of graphyne and its family[J]. Physical Review B-Condensed Matter and Materials Physics,1998,58(16):11009-11014. doi: 10.1103/PhysRevB.58.11009
    [26] Bu H, Zhao M, Wang A, et al. First-principles prediction of the transition from graphdiyne to a superlattice of carbon nanotubes and graphene nanoribbons[J]. Carbon,2013,65:341-348. doi: 10.1016/j.carbon.2013.08.035
    [27] He J, Ma S Y, Zhou P, et al. Magnetic properties of single transition-metal atom absorbed graphdiyne and graphyne sheet from DFT+U calculations[J]. Journal of Physical Chemistry C,2012,116(50):26313-26321. doi: 10.1021/jp307408u
    [28] Long M, Tang L, Wang D, et al. Electronic structure and carrier mobility in graphdiyne sheet and nanoribbons: Theoretical predictions[J]. ACS Nano,2011,5(4):2593-2600. doi: 10.1021/nn102472s
    [29] Zheng Q, Luo G, Liu Q, et al. Structural and electronic properties of bilayer and trilayer graphdiyne[J]. Nanoscale,2012,4(13):3990-3996. doi: 10.1039/c2nr12026g
    [30] Luo G, Zheng Q, Mei W N, et al. Structural, electronic and optical properties of bulk graphdiyne[J]. Journal of Physical Chemistry C,2013,117(25):13072-13079. doi: 10.1021/jp402218k
    [31] Zhou J, Gao X, Liu R, et al. Synthesis of graphdiyne nanowalls using acetylenic coupling reaction[J]. Journal of the American Chemical Society,2015,137(24):7596-7599. doi: 10.1021/jacs.5b04057
    [32] Zhou J, Xie Z, Liu R, et al. Synthesis of ultrathin graphdiyne film using a surface template[J]. ACS Applied Materials and Interfaces,2019,11(3):2632-2637. doi: 10.1021/acsami.8b02612
    [33] Malko D, Neiss C, Viñes F, et al. Competition for graphene: Graphynes with direction-dependent dirac cones[J]. Physical Review Letters,2012,108(8):1-4.
    [34] Li J, Gao X, Liu B, et al. Graphdiyne: A metal-free material as hole transfer layer to fabricate quantum dot-sensitized photocathodes for hydrogen production[J]. Journal of the American Chemical Society,2016,138(12):3954-3957. doi: 10.1021/jacs.5b12758
    [35] Tong H, Ouyang S, Bi Y, et al. Nano-photocatalytic materials: Possibilities and challenges[J]. Advanced Materials,2012,24(2):229-251. doi: 10.1002/adma.201102752
    [36] Ferrari A C, Meyer J C, Scardaci V, et al. Raman spectrum of graphene and graphene layers[J]. Physical Review Letters,2006,97(18):1-4.
    [37] Haley M M. Synthesis and properties of annulenic subunits of graphyne and graphdiyne nanoarchitectures[J]. Pure and Applied Chemistry,2008,80(3):519-532. doi: 10.1351/pac200880030519
    [38] Estrade-Szwarckopf H. XPS photoemission in carbonaceous materials: A “defect” peak beside the graphitic asymmetric peak[J]. Carbon,2004,42(8–9):1713-1721.
    [39] Tuinstra F, Koenig J L. Raman spectrum of graphite[J]. The Journal of Chemical Physics,1970,53(3):1126-1130. doi: 10.1063/1.1674108
    [40] Li C, Lu X, Han Y, et al. Direct imaging and determination of the crystal structure of six-layered graphdiyne[J]. Nano Research,2018,11(3):1714-1721. doi: 10.1007/s12274-017-1789-7
    [41] Gao X, Zhou J, Du R, et al. Robust superhydrophobic foam: A graphdiyne-based hierarchical architecture for Oil/Water separation[J]. Advanced Materials,2016,28(1):168-173. doi: 10.1002/adma.201504407
    [42] Wang S S, Liu H B, Kan X N, et al. Superlyophilicity-facilitated synthesis reaction at the microscale: Ordered graphdiyne stripe arrays[J]. Small,2017,13(4):1-7.
    [43] Zhang S, Liu H, Huang C, et al. Bulk graphdiyne powder applied for highly efficient lithium storage[J]. Chemical Communications,2015,51(10):1834-1837. doi: 10.1039/C4CC08706B
    [44] Colson J W, Woll A R, Mukherjee A, et al. Oriented 2D covalent organic framework thin films on single-layer graphene John[J]. Science,2011,332(6026):228-231. doi: 10.1126/science.1202747
    [45] Kim K, Santos E J G, Lee T H, et al. Epitaxially grown strained pentacene thin film on graphene membrane[J]. Small,2015,11(17):2037-2043. doi: 10.1002/smll.201403006
    [46] Xu L, Zhou X, Tian W Q, et al. Surface-confined single-layer covalent organic framework on single-layer graphene grown on copper foil[J]. Angewandte Chemie - International Edition,2014,53(36):9564-9568. doi: 10.1002/anie.201400273
    [47] Gao X, Zhu Y, Yi D, et al. Ultrathin graphdiyne film on graphene through solution-phase van der waals epitaxy[J]. Science Advances,2018,4(7):1-8.
    [48] Li J, Zhong L, Tong L, et al. Atomic Pd on graphdiyne/graphene heterostructure as efficient catalyst for aromatic nitroreduction[J]. Advanced Functional Materials,2019,29(43
    [49] Gao X, Li J, Du R, et al. Direct synthesis of graphdiyne nanowalls on arbitrary substrates and its application for photoelectrochemical water splitting cell[J]. Advanced Materials,2017,29(9
    [50] Zhao F, Wang N, Zhang M, et al. In situ growth of graphdiyne on arbitrary substrates with a controlled-release method[J]. Chemical Communications,2018,54(47):6004-6007. doi: 10.1039/C8CC03006E
    [51] Piradashvili K, Alexandrino E M, Wurm F R, et al. Reactions and polymerizations at the liquid-liquid interface[J]. Chemical Reviews,2016:2141-2169.
    [52] Matsumoto M, Valentino L, Stiehl G M, et al. Lewis-acid-catalyzed interfacial polymerization of covalent organic framework films[J]. Chem,2018,4(2):308-317. doi: 10.1016/j.chempr.2017.12.011
    [53] Tsukamoto T, Takada K, Sakamoto R, et al. Coordination nanosheets based on terpyridine-zinc(II) complexes: As photoactive host materials[J]. Journal of the American Chemical Society,2017,139(15):5359-5366. doi: 10.1021/jacs.6b12810
    [54] Matsuoka R, Sakamoto R, Hoshiko K, et al. Crystalline graphdiyne nanosheets produced at a gas/Liquid or liquid/Liquid interface[J]. Journal of the American Chemical Society,2017,139(8):3145-3152. doi: 10.1021/jacs.6b12776
    [55] Sakamoto R, Fukui N, Maeda H, et al. The accelerating world of graphdiynes[J]. Advanced Materials,2019,31(42
    [56] Perepichka D F, Rosei F. Extending polymer conjugation into the second dimension[J]. Science,2009,323(5911):216-217. doi: 10.1126/science.1165429
    [57] Cai J, Ruffieux P, Jaafar R, et al. Atomically precise bottom-up fabrication of graphene nanoribbons[J]. Nature,2010,466(7305):470-473. doi: 10.1038/nature09211
    [58] Grill L, Dyer M, Lafferentz L, et al. Nano-architectures by covalent assembly of molecular building blocks[J]. Nature Nanotechnology,2007,2(11):687-691. doi: 10.1038/nnano.2007.346
    [59] Eichhorn J, Heckl W M, Lackinger M. On-surface polymerization of 1, 4-Diethynylbenzene on Cu(111)[J]. Chemical Communications,2013,49(28):2900-2902. doi: 10.1039/c3cc40444g
    [60] Cirera B, Zhang Y Q, Björk J, et al. Synthesis of extended graphdiyne wires by vicinal surface templating[J]. Nano Letters,2014,14(4):1891-1897. doi: 10.1021/nl4046747
    [61] Gao H Y, Held P A, Amirjalayer S, et al. Intermolecular on-surface σ-bond metathesis[J]. Journal of the American Chemical Society,2017,139(20):7012-7019. doi: 10.1021/jacs.7b02430
    [62] Sun Q, Cai L, Ma H, et al. Dehalogenative homocoupling of terminal alkynyl bromides on Au(111): Incorporation of acetylenic scaffolding into surface nanostructures[J]. ACS Nano,2016,10(7):7023-7030. doi: 10.1021/acsnano.6b03048
    [63] Zhang Y Q, Kepčija N, Kleinschrodt M, et al. Homo-coupling of terminal alkynes on a noble metal surface[J]. Nature Communications,2012,3:1-8.
    [64] Liu R, Gao X, Zhou J, et al. Chemical vapor deposition growth of linked carbon monolayers with acetylenic scaffoldings on silver foil[J]. Advanced Materials,2017,29(18
    [65] Klappenberger F, Zhang Y Q, Björk J, et al. On-surface synthesis of carbon-based scaffolds and nanomaterials using terminal alkynes[J]. Accounts of Chemical Research,2015,48(7):2140-2150. doi: 10.1021/acs.accounts.5b00174
    [66] Zuo Z, Shang H, Chen Y, et al. A facile approach for graphdiyne preparation under atmosphere for an advanced battery anode[J]. Chemical Communications,2017,53(57):8074-8077. doi: 10.1039/C7CC03200E
    [67] Wang S, Yi L, Halpert J E, et al. A novel and highly efficient photocatalyst based on P 25- graphdiyne nanocomposite[J]. Small,2012,8(2):265-271. doi: 10.1002/smll.201101686
    [68] Yang N, Liu Y, Wen H, et al. Photocatalytic properties of graphdiyne and graphene modified TiO2: From Theory to Experiment[J]. ACS Nano,2013,7(2):1504-1512. doi: 10.1021/nn305288z
    [69] Liu Y. First-principles study on new photocatalytic materials graphdiyne-TiO2[J]. Acta Chimica Sinica,2013,71(2):260-264. doi: 10.6023/A12090705
    [70] Thangavel S, Krishnamoorthy K, Krishnaswamy V, et al. Graphdiyne-ZnO nanohybrids as an advanced photocatalytic material[J]. Journal of Physical Chemistry C,2015,119(38):22057-22065. doi: 10.1021/acs.jpcc.5b06138
    [71] Dong Y, Zhao Y, Chen Y, et al. Graphdiyne-hybridized N-Doped TiO2 nanosheets for enhanced visible light photocatalytic activity[J]. Journal of Materials Science,2018,53(12):8921-8932. doi: 10.1007/s10853-018-2210-y
    [72] Zhang X, Zhu M, Chen P, et al. Pristine graphdiyne-hybridized photocatalysts using graphene oxide as a dual-functional coupling reagent[J]. Physical Chemistry Chemical Physics,2015,17(2):1217-1225. doi: 10.1039/C4CP04683H
    [73] Han Y Y, Lu X L, Tang S F, et al. Metal-free 2D/2D heterojunction of graphitic carbon nitride/graphdiyne for improving the hole mobility of graphitic carbon nitride[J]. Advanced Energy Materials,2018,8(16):1-8.
    [74] Zuo Z, Li Y. Emerging electrochemical energy applications of graphdiyne[J]. Joule,2019,3(4):899-903. doi: 10.1016/j.joule.2019.01.016
    [75] Das B K, Sen D, Chattopadhyay K K. Implications of boron doping on electrocatalytic activities of graphyne and graphdiyne families: A first principles study[J]. Physical Chemistry Chemical Physics,2016,18(4):2949-2958. doi: 10.1039/C5CP05768J
    [76] Chen X. Graphyne nanotubes as electrocatalysts for oxygen reduction reaction: The effect of doping elements on the catalytic mechanisms[J]. Physical Chemistry Chemical Physics,2015,17(43):29340-29343. doi: 10.1039/C5CP05350A
    [77] Chen X, Qiao Q, An L, et al. Why do boron and nitrogen doped α- and γ-graphyne exhibit different oxygen reduction mechanism? A first-principles study[J]. Journal of Physical Chemistry C,2015:11493-11498.
    [78] Liu R, Liu H, Li Y, et al. Nitrogen-doped graphdiyne as a metal-free catalyst for high-performance oxygen reduction reactions[J]. Nanoscale,2014,6(19):11336-11343. doi: 10.1039/C4NR03185G
    [79] Gu J, Magagula S, Zhao J, et al. Boosting ORR/OER activity of graphdiyne by simple heteroatom doping[J]. Small Methods,2019,3(9):1-8.
    [80] Feng Z, Ma Y, Li Y, et al. Oxygen molecule dissociation on heteroatom doped graphdiyne[J]. Applied Surface Science,2019,494(June):421-429.
    [81] Lv Q, Si W, Yang Z, et al. Nitrogen-doped porous graphdiyne: a highly efficient metal-free electrocatalyst for oxygen reduction reaction[J]. ACS Applied Materials and Interfaces,2017,9(35):29744-29752. doi: 10.1021/acsami.7b08115
    [82] Zhao Y, Wan J, Yao H, et al. Few-layer graphdiyne doped with sp-hybridized nitrogen atoms at acetylenic sites for oxygen reduction electrocatalysis[J]. Nature Chemistry,2018,10(9):924-931. doi: 10.1038/s41557-018-0100-1
    [83] Gao Y, Cai Z, Wu X, et al. Graphdiyne-supported single-atom-sized Fe catalysts for the oxygen reduction reaction: DFT predictions and experimental validations[J]. ACS Catalysis,2018,8(11):10364-10374. doi: 10.1021/acscatal.8b02360
    [84] Xue Y, Guo Y, Yi Y, et al. Self-catalyzed growth of Cu@graphdiyne core–shell nanowires array for high efficient hydrogen evolution cathode[J]. Nano Energy,2016,30:858-866. doi: 10.1016/j.nanoen.2016.09.005
    [85] Xue Y, Li J, Xue Z, et al. Extraordinarily durable graphdiyne-supported electrocatalyst with high activity for hydrogen production at all values of PH[J]. ACS Applied Materials and Interfaces,2016,8(45):31083-31091. doi: 10.1021/acsami.6b12655
    [86] Xue Y, Huang B, Yi Y, et al. Anchoring zero valence single atoms of nickel and iron on graphdiyne for hydrogen evolution[J]. Nature Communications,2018,9(1
    [87] Yu H, Xue Y, Huang B, et al. Ultrathin nanosheet of graphdiyne-supported palladium atom catalyst for efficient hydrogen production[J]. iScience,2019,11:31-41. doi: 10.1016/j.isci.2018.12.006
    [88] Li J, Gao X, Jiang X, et al. Graphdiyne: A promising catalyst-support to stabilize cobalt nanoparticles for oxygen evolution[J]. ACS Catalysis,2017,7(8):5209-5213. doi: 10.1021/acscatal.7b01781
    [89] Li J, Gao X, Li Z, et al. Superhydrophilic graphdiyne accelerates interfacial mass/electron transportation to boost electrocatalytic and photoelectrocatalytic water oxidation activity[J]. Advanced Functional Materials,2019,29(16):1-8.
    [90] Xue Y, Zuo Z, Li Y, et al. Graphdiyne-supported NiCo2S4 nanowires: A highly active and stable 3D bifunctional electrode material[J]. Small,2017,13(31):1-10.
    [91] Hui L, Jia D, Yu H, et al. Ultrathin graphdiyne-wrapped iron carbonate hydroxide nanosheets toward efficient water splitting[J]. ACS Applied Materials and Interfaces,2019,11(3):2618-2625. doi: 10.1021/acsami.8b01887
    [92] Xu G, Wang R, Ding Y, et al. First-principles study on the single ir atom embedded graphdiyne: An efficient catalyst for CO oxidation[J]. Journal of Physical Chemistry C,2018,122(41):23481-23492. doi: 10.1021/acs.jpcc.8b06739
    [93] Zhai X, Yan H, Ge G, et al. The single-Mo-atom-embedded-graphdiyne monolayer with ultra-low onset potential as high efficient electrocatalyst for N2 reduction reaction[J]. Applied Surface Science,2020,506(November 2019
    [94] Li Y, Fang Y, Xue Y, et al. Graphdiyne interface engineering: Highly active and selective ammonia synthesis[J]. Angewandte Chemie International Edition,2020
    [95] Kan X, Wang D, Pan Q, et al. Confined interfacial synthesis of highly crystalline and ultrathin graphdiyne films and their applications for N2 fixation[J]. Chemistry - A European Journal,2020
  • 加载中
图(19) / 表(2)
计量
  • 文章访问数:  67
  • HTML全文浏览量:  28
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-22
  • 修回日期:  2020-11-08
  • 网络出版日期:  2021-03-25
  • 刊出日期:  2021-04-01

目录

    /

    返回文章
    返回