留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A review of biomass-derived graphene and graphene-like carbons for electrochemical energy storage and conversion

OUYANG Dan-dan HU Li-bing WANG Gang DAI Bin YU Feng ZHANG Li-li

欧阳丹丹, 胡立兵, 王刚, 代斌, 于锋, 张丽莉. 生物质衍生石墨烯和类石墨烯炭用于能源储存与转换的研究进展[J]. 新型炭材料, 2021, 36(2): 350-372. doi: 10.1016/S1872-5805(21)60023-21
引用本文: 欧阳丹丹, 胡立兵, 王刚, 代斌, 于锋, 张丽莉. 生物质衍生石墨烯和类石墨烯炭用于能源储存与转换的研究进展[J]. 新型炭材料, 2021, 36(2): 350-372. doi: 10.1016/S1872-5805(21)60023-21
OUYANG Dan-dan, HU Li-bing, WANG Gang, DAI Bin, YU Feng, ZHANG Li-li. A review of biomass-derived graphene and graphene-like carbons for electrochemical energy storage and conversion[J]. NEW CARBOM MATERIALS, 2021, 36(2): 350-372. doi: 10.1016/S1872-5805(21)60023-21
Citation: OUYANG Dan-dan, HU Li-bing, WANG Gang, DAI Bin, YU Feng, ZHANG Li-li. A review of biomass-derived graphene and graphene-like carbons for electrochemical energy storage and conversion[J]. NEW CARBOM MATERIALS, 2021, 36(2): 350-372. doi: 10.1016/S1872-5805(21)60023-21

生物质衍生石墨烯和类石墨烯炭用于能源储存与转换的研究进展

doi: 10.1016/S1872-5805(21)60023-21
详细信息
  • 中图分类号: TQ127.1+1

A review of biomass-derived graphene and graphene-like carbons for electrochemical energy storage and conversion

More Information
  • 摘要: 石墨烯和类石墨烯炭材料(G炭)具有高比表面积、优异的导电性和导热性等性质,很多原料可以被用来制备石墨烯和类石墨烯炭材料。该文介绍了近年来多种自然资源作为碳前体合成高质量G炭的方法,包括高温处理、基底上生长、模板辅助合成、无模板的自生催化、g-C3N4衍生、等离子体辅助合成、激光诱导等,分析了生物质合成石墨烯量子点的特点,讨论了G炭在电化学储存与转化、灵敏传感器等领域中的应用。这篇综述将有助于研究人员理解生物质高效利用并制备G炭,有利于大规模工业化生产的研究。
    The authors contribute equally to this work
  • FIG. 572.  FIG. 572.

    FIG. 572.. 

    Figure  1.  Graphene content versus temperature of pyrolyzed wood char powder production[47],and proposed formation mechanism of graphene grains from lignin[49]. Reprinted with permission..

    Figure  2.  (a) XRD spectra of pyrolyzed chitosan beads used as a graphene precursor, (b) Raman spectrum of exfoliated pyrolyzed chitosan beads after exfoliation and spin casting on a glass substrate, (c) SEM image of pyrolyzed chitosan beads and (d) TEM image of the graphene-based residue deposited from an aqueous suspension[52]. Reprinted with permission.

    Figure  3.  (a) Preparation of phosphorus-doped graphene (PDG), (b) Raman spectrum of PDG-2 recorded using a 514-nm excitation wavelength, (c) comparison of the ultraviolet–visible spectra of graphene products and (d) TEM image of PDG-2[55]. Reprinted with permission.

    Figure  4.  (a) Schematic of graphene synthesis from leaves, (b) corresponding Raman spectrum and (c) Raman shifts after modification via π–π interactions.[61]. Reprinted with permission.

    Figure  5.  Raman spectra of the following: (a) Hydrothermal carbon, 500–1500 /cm and (b) Coconut, 500–1500 /cm[64]. Reprinted with permission.

    Figure  6.  (a) Schematic of low-pressure chemical vapor deposition[72]. (b)–(g) Raman spectra of graphene derived from the following: (b) cookies, (c) chocolate, (d) grass, (e) plastic (polystyrene Petri dish), (f) dog feces and (f) cockroach legs[71]. Reprinted with permission.

    Figure  7.  (a) Schematic of graphene synthesis, supported on a fibrous clay sepiolite, from natural resources, as follows from (b) sucrose and (c) gelatin[44]. Reprinted with permission.

    Figure  8.  (a) Formation of porous graphic carbon sheets from cornstalks, (b) XRD patterns for samples derived from a cornstalk-[Fe(CN)6]4− composite, synthesized over a carbonization temperature range of 700 °C to 1100 °C, (c) Raman spectra for the porous graphic carbon sheet samples synthesized under various conditions, labeled in accordance with the catalyst concentration and carbonization temperature, (d) TEM image of the overall structure of the porous graphic carbon sheet samples and (e) TEM image of the enlarged structures of the selected area[95]. Reprinted with permission.

    Figure  9.  (a) General synthetic route to lower symmetric HBCs[101], (b) preparation of porous flake-like carbon/Fe3O4 composites from chitosan[105], (c) XRD patterns for graphene-like carbons from glucose[104], (d) Raman spectra for graphene-like carbons from glucose[104], (e) XRD patterns of porous graphene NS-3 materials[106] and (f) Raman spectrum of a porous graphene NS-3-900 material[106]. Reprinted with permission.

    Figure  10.  (a) Proposed synthetic protocol for free-standing graphene (Bottom: Repetition motifs of an ideal g-C3N4 plane (middle) and of graphene (right); C, black or gray; N, blue) and (b) synthesis of N-graphene sheets grafted to a carbon fiber from the mixture of urea and cotton[114]. Reprinted with permission.

    Figure  11.  (a) Schematic for converting cheese precursors into vertical graphene NSs[120], (b) typical SEM image from a processed cheese precursor, (c) typical SEM image from a cream cheese precursor, (d) Raman spectrum of the product formed from a processed cheese precursor and (e) Raman spectrum of the product formed from a cream cheese precursor. Reprinted with permission.

    Figure  12.  (a) In-house plasma reactor system employed for graphene growth, (b) proposed graphene growth pathway under plasma: (i) C—O, C=O, and C—H bonds breaks due to thermal energy, (ii) H atoms generated by plasma adsorb on the Cu substrate, etch the surface, and reduce more stable C—O and C=O bonds, whereas Ar atoms act as carriers, (iii) carbon atoms form nucleation islands on the substrate surface and migrate on the surface, (iv) graphene layer formed by the bond between the nucleation islands, whereas the excess carbon atoms start forming another layer on top and (v) the top layers etch, attributable to the hydrogen atoms generated by the plasma, to form a single-layered graphene at long plasma exposure times, (c) TEM image of graphene under plasma treatment for 30 min and (d) ratio of ID/IG and ID/I2G under various plasma treatment times[124]. Reprinted with permission.

    Figure  13.  (a) Schematic of laser-induced graphene produced on bread[129], (b) schematic of wood-derived, laser-induced graphene and (c) Raman spectra of various woods irradiated at 70% laser power[128]. Reprinted with permission.

    Figure  14.  (a) TEM image of RH-graphene QDs, (b) higher magnification image of the type shown in part (a), (c) atomic force micrograph and height profiles of RH-GQDs synthesized at 200 °C and (d) SEM micrograph of RH-GQDs[46]. Reprinted with permission.

    Table  1.   Summary of graphene synthesized at high temperatures.

    Biomass materialsProductsID/IGRef.
    Wood char powdersGraphene-[43]
    Biochar materials from woodsGraphene-[48]
    ChitosanNDG1/1.15[52]
    ChitosanNDG-[53]
    AlginateGraphene1/1.13[54]
    AlginatePDG-[55]
    AlginateBDG-[56]
    AlginateCeOx/G-[57]
    Wheat strawGraphene1/1.37[45]
    Soybean shellsNDG1.13[58]
    Silk cocoonsNDG0.87[59]
    Camphor leavesGraphene0.99[61]
    Coconut coir dustGraphene-[64]
    Oil palm empty fruit bunchesGraphene1/1.25[60]
    CucumbersGraphene1.07[65]
    下载: 导出CSV

    Table  2.   Summary of graphene grown on various substrates.

    Biomass materialsProductsID/IGI2D/IGRef.
    CookiesGraphene--[71]
    ChocolateGraphene--[71]
    GrassGraphene--[71]
    PlasticGraphene--[71]
    Dog fecesGraphene--[71]
    RoachesGraphene--[71]
    Chicken fatGraphene-3.0[72]
    Soybean oilGraphene1.50[73]
    Sodium alginateGraphene--[76]
    Alginate and chitosanBNG--[77]
    Rice husk ashGraphene1.34-[78]
    SucroseGraphene--[83]
    ChitosanNDG--[84]
    下载: 导出CSV

    Table  3.   Summary of template-assisted graphene growth.

    Biomass materialsProductsID/IGRef.
    SucroseGraphene-[44]
    GelatinGraphene1/1.2[44]
    RiceGraphene-[88]
    SeaweedMagnetic graphene1.00[89]
    Shrimp shellsGraphene-like carbon1/1.06[86]
    Larch wood chipsGraphene-like carbon0.9[87]
    Salvai splendens petalsGPCNs1.13[90]
    Clover precursorGraphene-like carbon-[91]
    CMCC-NaJS-CK2NS0.93[92]
    CornstalkGraphene-like carbon-[93]
    下载: 导出CSV

    Table  4.   Summary of graphene synthesized by self-generating, template-free catalysis.

    Biomass materialsProductsID/IGRef.
    CornstalkGraphitic carbon1/1.6[95]
    Milk powderGraphene-[98]
    BambooGraphene-like carbon0.62[99]
    Disposable paper cupsGraphene-[100]
    Seven kinds of biomass feedstocksGO, rGO-[103]
    GlucoseGraphene-like carbon-[104]
    Coconut shellsGraphene-like carbon1/3.98[106]
    ChitosanMagnetic graphene-like carbon-[105]
    Peanut shellGraphene-like nanosheets1.01[107]
    Ginger rootGraphene-like carbon-[108]
    下载: 导出CSV

    Table  5.   Summary of graphene derived from g-C3N4.

    Biomass materialsProductsID/IGRef.
    GlucoseNDG1.06[109]
    GlucoseNDG-[110]
    GlucoseBNLG-[111]
    GlucoseNDG-[112]
    GlucoseGraphene-like carbon-[113]
    Raw cottonNDG grafted on fiber-[114]
    CottonNDG1.52[115]
    Pine nut shellsGraphene-like carbon-[116]
    Soybean oilPGCNs1.05[117]
    下载: 导出CSV

    Table  6.   Summary of plasma-assisted graphene synthesis.

    Biomass materialsProductsID/IGI2D/IGRef.
    Processed cheeseGraphene0.71.2[120]
    Cream cheeseGraphene1.40.95[120]
    ButterGraphene1.1-[122]
    HoneyGraphene0.450.59[123]
    Table sugarGraphene0.70.47[123]
    ButterGraphene0.60.6[123]
    Condensed milkGraphene0.510.55[123]
    MethaneGraphene0.710.49[123]
    Mango peelsGraphene0.7–2.80.4–2.78[124]
    下载: 导出CSV

    Table  7.   Summary of laser-induced graphene synthesis.

    Biomass materialsProductsID/IGI2D/IGRef.
    WoodGraphene0.48-[128]
    Potatoes and breadLIG0.2–1.30.6–0.9[129]
    下载: 导出CSV

    Table  8.   Summary of GQD synthesis.

    Biomass materialsProductsYieldRef.
    Neem leavesGQDs54%[94]
    Rice husksGQDs15%[46]
    Mango leavesGQDs-[132]
    Spent teaGQDs84%[133]
    cauliflower leaf CQDs-[134]
    StarchGQDs21.7%[136]
    Sodium alginateGQDs-[135]
    下载: 导出CSV
  • [1] Lu X, Yu M, Huang H, et al. Tailoring graphite with the goal of achieving single sheets[J]. Nanotechnology,1999,10(3):269-272. doi: 10.1088/0957-4484/10/3/308
    [2] Geim A K, Novoselov K S. The rise of graphene[J]. nature materials,2007,6(3):183-191. doi: 10.1038/nmat1849
    [3] Huang H, Shi H, Das P, et al. The Chemistry and Promising Applications of Graphene and Porous Graphene Materials[J]. Advanced Functional Materials,2020,30(41):1909035. doi: 10.1002/adfm.201909035
    [4] Agudosi E, Abdullah E, Numan A, et al. A Review of the Graphene Synthesis Routes and its Applications in Electrochemical Energy Storage[J]. Critical Reviews in Solid State and Materials Sciences,2019,45(5):339-377.
    [5] Kong X, Zhu Y, Lei H, et al. Synthesis of graphene-like carbon from biomass pyrolysis and its applications[J]. Chemical Engineering Journal,2020,399:125808. doi: 10.1016/j.cej.2020.125808
    [6] Wang J, Jin X, Li C, et al. Graphene and graphene derivatives toughening polymers: Toward high toughness and strength[J]. Chemical Engineering Journal,2019,370:831-854. doi: 10.1016/j.cej.2019.03.229
    [7] Malesevic A, Kemps R, Vanhulsel A, et al. Field emission from vertically aligned few-layer graphene[J]. Journal of Applied Physics,2008,104(8):084301. doi: 10.1063/1.2999636
    [8] Eda G, Emrah Unalan H, Rupesinghe N, et al. Field emission from graphene based composite thin films[J]. Applied Physics Letters,2008,93(23):233502. doi: 10.1063/1.3028339
    [9] Wu Z-S, Pei S, Ren W, et al. Field Emission of Single-Layer Graphene Films Prepared by Electrophoretic Deposition[J]. Advanced Materials,2009,21(17):1756-1760. doi: 10.1002/adma.200802560
    [10] Schedin F, Geim A K, Morozov S V, et al. Detection of individual gas molecules adsorbed on graphene[J]. nature materials,2007,6(9):652-655. doi: 10.1038/nmat1967
    [11] Fowler J D, Allen M J, Tung V C, et al. Practical Chemical Sensors from Chemically Derived Graphene[J]. ACS Nano,2009,3(2):301-306. doi: 10.1021/nn800593m
    [12] Sundaram R S, Gómez-Navarro C, Balasubramanian K, et al. Electrochemical Modification of Graphene[J]. Advanced Materials,2008,20(16):3050-3053. doi: 10.1002/adma.200800198
    [13] Shan C, Yang H, Song J, et al. Direct Electrochemistry of Glucose Oxidase and Biosensing for Glucose Based on Graphene[J]. Analytical Chemistry,2009,81(6):2378-2382. doi: 10.1021/ac802193c
    [14] Alwarappan S, Erdem A, Liu C, et al. Probing the Electrochemical Properties of Graphene Nanosheets for Biosensing Applications[J]. Journal of Physical Chemistry C,2009,113(20):8853-8857. doi: 10.1021/jp9010313
    [15] Novoselov K S, Geim A K, Morozov S V, et al. Electric Field Effect in Atomically Thin Carbon Films[J]. Science,2004,306(5696):666-669. doi: 10.1126/science.1102896
    [16] Son Y-W, Cohen M L, Louie S G. Energy Gaps in Graphene Nanoribbons[J]. Physical Review Letters,2006,97(21):210683.
    [17] Obradovic B, Kotlyar R, Heinz F, et al. Analysis of graphene nanoribbons as a channel material for field-effect transistors[J]. Applied Physics Letters,2006,88(14):142102. doi: 10.1063/1.2191420
    [18] Meric I, Han M Y, Young A F, et al. Current saturation in zero-bandgap, top-gated graphene field-effect transistors[J]. Nature Nanotechnology,2008,3(11):654-659. doi: 10.1038/nnano.2008.268
    [19] Tseng F, Unluer D, Holcomb K, et al. Diluted chirality dependence in edge rough graphene nanoribbon field-effect transistors[J]. Applied Physics Letters,2009,94(22):223112. doi: 10.1063/1.3147187
    [20] Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes[J]. Nature,2008,7320(457):2758-2763.
    [21] Wu J B, Becerril H A, Bao Z, et al. Organic solar cells with solution-processed graphene transparent electrodes[J]. Applied Physics Letters,2008,92(26):263302. doi: 10.1063/1.2924771
    [22] Wang X, Zhi L, Mullen K. Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells[J]. Nano Letters,2008,8(1):323-327. doi: 10.1021/nl072838r
    [23] Wang X, Zhi L, Tsao N, et al. Transparent Carbon Films as Electrodes in Organic Solar Cells[J]. Angewandte Chemie,2008,120(16):3032-3034. doi: 10.1002/ange.200704909
    [24] Paek S M, Yoo E J, Honma I. Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure[J]. Nano Letters,2009,9(1):72-75. doi: 10.1021/nl802484w
    [25] Wang D, Choi D, Li J, et al. Self-Assembled TiO2–Graphene Hybrid Nanostructures for Enhanced Li-Ion Insertion[J]. ACS Nano,2009,3(4):907-914. doi: 10.1021/nn900150y
    [26] Kryukov A Y, Davydov S Y, Izvol'skii I M, et al. Palladium Supported on Graphene-like Carbon: Preparation and Catalytic Properties[J]. Mendeleev Communications,2012,22(5):237-238. doi: 10.1016/j.mencom.2012.09.002
    [27] Yang S, Wu P, Chen L, et al. A facile method to fabricate N-doped graphene-like carbon as efficient electrocatalyst using spent montmorillonite[J]. Applied Clay Science,2016,132(SI):731-738.
    [28] Dong G, Ho W, Li Y, et al. Facile synthesis of porous graphene-like carbon nitride (C6N9H3) with excellent photocatalytic activity for NO removal[J]. Applied Catalysis B: Environmental,2015,174:477-485.
    [29] Yuan G D, Zhang W J, Yang Y, et al. Graphene sheets via microwave chemical vapor deposition[J]. Chemical Physics Letters,2009,467(4-6):361-364. doi: 10.1016/j.cplett.2008.11.059
    [30] Sun J, Lindvall N, Cole M T, et al. Large-area uniform graphene-like thin films grown by chemical vapor deposition directly on silicon nitride[J]. Applied Physics Letters,2011,98(25):252107. doi: 10.1063/1.3602921
    [31] Wei D, Lu Y, Han C, et al. Critical crystal growth of graphene on dielectric substrates at low temperature for electronic devices[J]. Angewandte Chemie International Edition,2013,52(52):14121-14126. doi: 10.1002/anie.201306086
    [32] Nandamuri G, Roumimov S, Solanki R. Chemical vapor deposition of graphene films[J]. Nanotechnology,2010,21(14):145604. doi: 10.1088/0957-4484/21/14/145604
    [33] Gupta K, Gupta D, Khatri O P. Graphene-like porous carbon nanostructure from Bengal gram bean husk and its application for fast and efficient adsorption of organic dyes[J]. Applied Surface Science,2019,476:647-657. doi: 10.1016/j.apsusc.2019.01.138
    [34] Bi Z, Kong Q, Cao Y, et al. Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes: a review[J]. Journal of Materials Chemistry A,2019,7(27):16028-16045. doi: 10.1039/C9TA04436A
    [35] Das V K, Shifrina Z B, Bronstein L M. Graphene and graphene-like materials in biomass conversion: paving the way to the future[J]. Journal of Materials Chemistry A,2017,5(48):25131-25143. doi: 10.1039/C7TA09418C
    [36] Lanzetta M, Di Blasi C. Pyrolysis kinetics of wheat and corn straw[J]. Journal of Analytical and Applied Pyrolysis,1998,44(2):181-192. doi: 10.1016/S0165-2370(97)00079-X
    [37] Haykiri-Acma H, Yaman S, Kucukbayrak S. Gasification of biomass chars in steam–nitrogen mixture[J]. Energy Conversion and Management,2006,47(7-8):1004-1013. doi: 10.1016/j.enconman.2005.06.003
    [38] Pütün A E, Özbay N, Önal E P, et al. Fixed-bed pyrolysis of cotton stalk for liquid and solid products[J]. Fuel Processing Technology,2005,86(11):1207-1219. doi: 10.1016/j.fuproc.2004.12.006
    [39] Malik P K. Use of activated carbons prepared from sawdust and rice-husk for adsorption of acid dyes: a case study of Acid Yellow 36[J]. Dyes and Pigments,2003,56(3):239-249. doi: 10.1016/S0143-7208(02)00159-6
    [40] Yalçın N, Sevinç V. Studies of the surface area and porosity of activated carbons prepared from rice husks[J]. Carbon,2000,38(14):1943-1945. doi: 10.1016/S0008-6223(00)00029-4
    [41] Savova D, Apak E, Ekinci E, et al. Biomass conversion to carbon adsorbents and gas[J]. Biomass Bioenergy,2001,21(2):133-142. doi: 10.1016/S0961-9534(01)00027-7
    [42] Wang Q, Cao Q, Wang X, et al. A high-capacity carbon prepared from renewable chicken feather biopolymer for supercapacitors[J]. Journal of Power Sources,2013,225:101-107. doi: 10.1016/j.jpowsour.2012.10.022
    [43] Zhao B Y, Chen Y X, Lai Y J, et al., Method for preparing graphene from biomass-derived carbonaceous mesophase. [P]. 20150133568, 2015.
    [44] Ruiz-Hitzky E, Darder M, Fernandes F M, et al. Supported Graphene from Natural Resources: Easy Preparation and Applications[J]. Advanced Materials,2011,23(44):5250-5255. doi: 10.1002/adma.201101988
    [45] Chen F, Yang J, Bai T, et al. Facile synthesis of few-layer graphene from biomass waste and its application in lithium ion batteries[J]. Journal of Electroanalytical Chemistry,2016,768:18-26. doi: 10.1016/j.jelechem.2016.02.035
    [46] Wang Z, Yu J, Zhang X, et al. Large-Scale and Controllable Synthesis of Graphene Quantum Dots from Rice Husk Biomass: A Comprehensive Utilization Strategy[J]. ACS Applied Materials & Interfaces,2016,8(2):1434-1439.
    [47] Liou Y-J, Huang W-J. Quantitative Analysis of Graphene Sheet Content in Wood Char Powders during Catalytic Pyrolysis[J]. Journal of Materials Science & Technology,2013,29(5):406-410.
    [48] Li Z, Xu Z, Tan X, et al. Mesoporous nitrogen-rich carbons derived from protein for ultra-high capacity battery anodes and supercapacitors[J]. Energy & Environmental Science,2013,6(3):871-878.
    [49] Liou Y-J, Huang W-J, A Process for Preparing High Graphene Sheet Content Carbon Materials from Biochar Materials. In Electroplating of Nanostructures, [M] United States: Intech, 2015.
    [50] Guo H-L, Su P, Kang X, et al. Synthesis and characterization of nitrogen-doped graphene hydrogels by hydrothermal route with urea as reducing-doping agents[J]. Journal of Materials Chemistry A,2013,1(6):2248-2255. doi: 10.1039/C2TA00887D
    [51] Qu L, Liu Y, Baek J B, et al. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells[J]. Acs Nano,2010,4(3):1321-1326. doi: 10.1021/nn901850u
    [52] Primo A, Sánchez E, Delgado J M, et al. High-yield production of N-doped graphitic platelets by aqueous exfoliation of pyrolyzed chitosan[J]. Carbon,2014,68:777-783. doi: 10.1016/j.carbon.2013.11.068
    [53] Lavorato C, Primo A, Molinari R, et al. N-Doped Graphene Derived from Biomass as a Visible-Light Photocatalyst for Hydrogen Generation from Water/Methanol Mixtures[J]. Chemistry A European Journal,2014,20(1):187-194. doi: 10.1002/chem.201303689
    [54] Trandafir M M, Florea M, Neaţu F, et al. Graphene from Alginate Pyrolysis as a Metal‐Free Catalyst for Hydrogenation of Nitro Compounds[J]. ChemSusChem,2016,9(13):1565-1569. doi: 10.1002/cssc.201600197
    [55] Latorre-Sánchez M, Primo A, García H. P-Doped Graphene Obtained by Pyrolysis of Modified Alginate as a Photocatalyst for Hydrogen Generation from Water-Methanol Mixtures[J]. Angewandte Chemie International Edition,2013,52(45):11813-11816. doi: 10.1002/anie.201304505
    [56] Dhakshinamoorthy A, Primo A, Concepcion P, et al. Doped Graphene as a Metal-Free Carbocatalyst for the Selective Aerobic Oxidation of Benzylic Hydrocarbons, Cyclooctane and Styrene[J]. Chemistry-A European Journal,2013,19(23):7547-7554. doi: 10.1002/chem.201300653
    [57] Lavorato C, Primo A, Molinari R, et al. Natural Alginate as a Graphene Precursor and Template in the Synthesis of Nanoparticulate Ceria/Graphene Water Oxidation Photocatalysts[J]. ACS Catalysis,2014,4(2):497-504. doi: 10.1021/cs401068m
    [58] Zhou H, Zhang J, Amiinu I S, et al. Transforming waste biomass with an intrinsically porous network structure into porous nitrogen-doped graphene for highly efficient oxygen reduction[J]. Physical Chemistry Chemical Physics,2016,18(15):10392-10399. doi: 10.1039/C6CP00174B
    [59] Sahu V, Grover S, Tulachan B, et al. Heavily nitrogen doped, graphene supercapacitor from silk cocoon[J]. Electrochimica Acta,2015,160:244-253. doi: 10.1016/j.electacta.2015.02.019
    [60] Parshetti G K, Chowdhury S, Balasubramanian R. Plant derived porous graphene nanosheets for efficient CO2 capture[J]. RSC Advances,2014,4(84):44634-44634. doi: 10.1039/C4RA05522E
    [61] Shams S S, Zhang L, Hu R, et al. Synthesis of graphene from biomass: A green chemistry approach[J]. Materials Letters,2015,161(15):476-479.
    [62] Liu J Q, Yang W R, Tao L, et al. Thermosensitive graphene nanocomposites formed using pyrene-terminal polymers made by RAFT polymerization[J]. Journal of Polymer Science Part A: Polymer Chemistry,2010,48(2):425-433. doi: 10.1002/pola.23802
    [63] Kuilla T, Bhadra S, Yao D, et al. Recent advances in graphene based polymer composites[J]. Progress in Polymer Science,2010,35(11):1350-1375. doi: 10.1016/j.progpolymsci.2010.07.005
    [64] Barin G B, Santos Y H, Rocha J A, et al. Graphene-like nanostructures obtained from Biomass[J]. MRS Online Proc. Libr,2013,1505:mrsf12-1505-w10-24. doi: 10.1557/opl.2013.479
    [65] Gopalakrishnan A, Badhulika S. Ultrathin graphene-like 2D porous carbon nanosheets and its excellent capacitance retention for supercapacitor[J]. Journal of Industrial and Engineering Chemistry,2018,68:257-266. doi: 10.1016/j.jiec.2018.07.052
    [66] Sun Z, Yan Z, Yao J, et al. Growth of graphene from solid carbon sources[J]. Nature,2010,468(7323):549-552. doi: 10.1038/nature09579
    [67] Shams S S, Ruo Yu Z, Jin Z. Graphene synthesis: a Review[J]. Materials Science-Poland,2015,33(3):566-578. doi: 10.1515/msp-2015-0079
    [68] Li X, Cai W, An J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils[J]. Science,2009,324(5932):1312-1314. doi: 10.1126/science.1171245
    [69] Wei D C, Liu Y Q, Wang Y, et al. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties[J]. Nano Letters,2009,9(5):1752-1758. doi: 10.1021/nl803279t
    [70] Srivastava A, Galande C, Ci L, et al. Novel Liquid Precursor-Based Facile Synthesis of Large-Area Continuous, Single, and Few-Layer Graphene Films[J]. Chemistry of Materials,2010,22(11):3457-3461. doi: 10.1021/cm101027c
    [71] Ruan G, Sun Z, Peng Z, et al. Growth of Graphene from Food, Insects, and Waste[J]. ACS Nano,2011,5(9):7601-7607. doi: 10.1021/nn202625c
    [72] Rosmi M S, Shinde S M, Rahman N D A, et al. Synthesis of uniform monolayer graphene on re-solidified copper from waste chicken fat by low pressure chemical vapor deposition[J]. Materials Research Bulletin,2016,83:573-580. doi: 10.1016/j.materresbull.2016.07.010
    [73] Seo D H, Pineda S, Fang J, et al. Single-step ambient-air synthesis of graphene from renewable precursors as electrochemical genosensor[J]. Nature Communications,2017,8:14217. doi: 10.1038/ncomms14217
    [74] Zhang Y, Zhang L, Zhou C. Review of chemical vapor deposition of graphene and related applications[J]. Acc Chem Res,2013,46(10):2329-2339. doi: 10.1021/ar300203n
    [75] Li X, Cai W, Colombo L, et al. Evolution of graphene growth on Ni and Cu by carbon isotope labeling[J]. Nano Letters,2009,9(12):4268-4272. doi: 10.1021/nl902515k
    [76] Xing H, Zhang F, Lu Y, et al. Facile synthesis of carbon nanoparticles/graphene composites derived from biomass resources and their application in lithium ion batteries[J]. RSC Advances,2016,6(83):79366-79371. doi: 10.1039/C6RA15690H
    [77] Latorre-Sanchez M, Primo A, Atienzar P, et al. p-n Heterojunction of doped graphene films obtained by pyrolysis of biomass precursors[J]. Small,2015,11(8):970-975. doi: 10.1002/smll.201402278
    [78] Muramatsu H, Kim Y A, Yang K-S, et al. Rice Husk-Derived Graphene with Nano-Sized Domains and Clean Edges[J]. Small,2014,10(14):2766-2770. doi: 10.1002/smll.201400017
    [79] Chen X, Wu B, Liu Y Q. Direct preparation of high quality graphene on dielectric substrates[J]. Chemical Society Reviews,2016,45(8):2057-2074. doi: 10.1039/C5CS00542F
    [80] Teng P Y, Lu C C, Akiyama-Hasegawa K, et al. Remote catalyzation for direct formation of graphene layers on oxides[J]. Nano Letters,2012,12(3):1379-1384. doi: 10.1021/nl204024k
    [81] Chen J Y, Wen Y, Guo Y, et al. Oxygen-aided synthesis of polycrystalline graphene on silicon dioxide substrates[J]. Journal of the American Chemical Society,2011,133(44):17548-17551. doi: 10.1021/ja2063633
    [82] Medina H, Lin Y-C, Jin C, et al. Metal-Free Growth of Nanographene on Silicon Oxides for Transparent Conducting Applications[J]. Advanced Functional Materials,2012,22(10):2123-2128. doi: 10.1002/adfm.201102423
    [83] Gupta S S, Sreeprasad T S, Maliyekkal S M, et al. Graphene from Sugar and its Application in Water Purification[J]. ACS Applied Materials & Interfaces,2012,4(8):4156-4163.
    [84] Primo A, Atienzar P, Sanchez E, et al. From biomass wastes to large-area, high-quality, N-doped graphene: catalyst-free carbonization of chitosan coatings on arbitrary substrates[J]. Chemical Communications,2012,48(74):9254-9256. doi: 10.1039/c2cc34978g
    [85] Ferrari A C. Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects[J]. Solid State Communications,2007,143(1):47-57.
    [86] Tian W, Gao Q, Zhang L, et al. Renewable graphene-like nitrogen-doped carbon nanosheets as supercapacitor electrodes with integrated high energy–power properties[J]. Journal of Materials Chemistry A,2016,4(22):8690-8699. doi: 10.1039/C6TA02828D
    [87] Zhang Y J, Chen H L, Wang S J, et al. Regulatory pore structure of biomass-based carbon for supercapacitor applications[J]. Microporous and Mesoporous Materials,2020,297:110032. doi: 10.1016/j.micromeso.2020.110032
    [88] Tang C, Wang H F, Chen X, et al. Topological Defects in Metal-Free Nanocarbon for Oxygen Electrocatalysis[J]. Advanced Materials,2016,28(32):6845-6851. doi: 10.1002/adma.201601406
    [89] Mondal D, Sharma M, Wang C H, et al. Deep eutectic solvent promoted one step sustainable conversion of fresh seaweed biomass to functionalized graphene as a potential electrocatalyst[J]. Green Chemistry,2016,18(9):2819-2826. doi: 10.1039/C5GC03106K
    [90] Liu B, Yang M, Chen H, et al. Graphene-like porous carbon nanosheets derived from salvia splendens for high-rate performance supercapacitors[J]. Journal of Power Sources,2018,397:1-10. doi: 10.1016/j.jpowsour.2018.06.100
    [91] Wang C J, Wu D P, Wang H J, et al. Nitrogen-doped two-dimensional porous carbon sheets derived from clover biomass for high performance supercapacitors[J]. J. Power Sources,2017,363:375-383. doi: 10.1016/j.jpowsour.2017.07.097
    [92] Jia S, Wei J, Meng X, et al. Facile and friendly preparation of N/S Co-doped graphene-like carbon nanosheets with hierarchical pore by molten salt for all-solid-state supercapacitor[J]. Electrochimica Acta,2020,331:135338. doi: 10.1016/j.electacta.2019.135338
    [93] Wang C J, Wu D P, Wang H J, et al. A green and scalable route to yield porous carbon sheets from biomass for supercapacitors with high capacity[J]. Journal of Materials Chemistry A,2018,6(3):1244-1254. doi: 10.1039/C7TA07579K
    [94] Suryawanshi A, Biswal M, Mhamane D, et al. Large scale synthesis of graphene quantum dots (GQDs) from waste biomass and their use as an efficient and selective photoluminescence on–off–on probe for Ag+ions[J]. Nanoscale,2014,6(20):11664-11670. doi: 10.1039/C4NR02494J
    [95] Wang L, Mu G, Tian C G, et al. Porous Graphitic Carbon Nanosheets Derived from Cornstalk Biomass for Advanced Supercapacitors[J]. ChemSusChem,2013,6(5):880-889. doi: 10.1002/cssc.201200990
    [96] Malvi B, Panda C, Dhar B B, et al. One pot glucose detection by [Fe(III)(biuret-amide)] immobilized on mesoporous silica nanoparticles: an efficient HRP mimic[J]. Chemical Communications,2012,48(43):5289-5291. doi: 10.1039/c2cc30970j
    [97] Rising M M, Yang P S. The biuret reaction III. The biuret reaction of amino acid amides[J]. Journal of Biological Chemistry,1933,99(1):1-25.
    [98] Zhao H, Hui K S, Hui K N. Synthesis of nitrogen-doped multilayer graphene from milk powder with melamine and their application to fuel cells[J]. Carbon,2014,76:1-9. doi: 10.1016/j.carbon.2014.04.007
    [99] Gong Y N, Li D L, Luo C Z, et al. Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors[J]. Green Chemistry,2017,19(17):4132-4140. doi: 10.1039/C7GC01681F
    [100] Zhao H, Zhao T S. Graphene sheets fabricated from disposable paper cups as a catalyst support material for fuel cells[J]. Journal of materials Chemistry A,2013,1(2):183-187. doi: 10.1039/C2TA00018K
    [101] Wu J, Wojciech Pisula A, Müllen K. Graphenes as Potential Material for Electronics[J]. Chemical Reviews,2007,107(3):718-747. doi: 10.1021/cr068010r
    [102] Adams K, Ball A K, Birkett J, et al. An iron-catalysed C–C bond-forming spirocyclization cascade providing sustainable access to new 3D heterocyclic frameworks[J]. Nature Chemistry,2016,9(4):396-401.
    [103] Akhavan O, Bijanzad K, Mirsepah A. Synthesis of graphene from natural and industrial carbonaceous wastes[J]. RSC Advances,2014,4(39):20441-20448. doi: 10.1039/c4ra01550a
    [104] Lei H, Yan T, Wang H, et al. Graphene-like carbon nanosheets prepared by a Fe-catalyzed glucose-blowing method for capacitive deionization[J]. Journal of Materials Chemistry A,2015,3(11):5934-5941. doi: 10.1039/C4TA05713A
    [105] Wang M, Wang W, Wang W, et al. Synthesis of partially graphitic nanoflake-like carbon/Fe3O4 magnetic composites from chitosan as high-performance electrode materials in supercapacitors[J]. RSC Advances,2014,4(75):39625-39633. doi: 10.1039/C4RA06478J
    [106] Sun L, Tian C, Li M T, et al. From coconut shell to porous graphene-like nanosheets for high-power supercapacitors[J]. Journal of materials Chemistry A,2013,1(21):6462-6470. doi: 10.1039/c3ta10897j
    [107] Purkait T, Singh G, Singh M, et al. Large area few-layer graphene with scalable preparation from waste biomass for high-performance supercapacitor[J]. Scientific Reports,2017,7(1):15239. doi: 10.1038/s41598-017-15463-w
    [108] Gopalakrishnan A, Kong C Y, Badhulika S. Scalable, large-area synthesis of heteroatom-doped few-layer graphene-like microporous carbon nanosheets from biomass for high-capacitance supercapacitors[J]. New Journal of Chemistry,2019,43(3):1186-1194. doi: 10.1039/C8NJ05128C
    [109] Tian L L, Wei X Y, Zhuang Q C, et al. Bottom-up synthesis of nitrogen-doped graphene sheets for ultrafast lithium storage[J]. Nanoscale,2014,6(11):6075-6083. doi: 10.1039/C4NR00454J
    [110] Li X H, Kurasch S, Kaiser U, et al. Synthesis of monolayer-patched graphene from glucose[J]. Angewandte Chemie International Edition,2012,51(38):9689-9692. doi: 10.1002/anie.201203207
    [111] Li X-H, Antonietti M. Polycondensation of Boron-and Nitrogen-Codoped Holey Graphene Monoliths from Molecules: Carbocatalysts for Selective Oxidation[J]. Angewandte Chemie International Edition,2013,52(17):4572-4576. doi: 10.1002/anie.201209320
    [112] Zhang Y W, Ge J, Wang L, et al. Manageable N-doped graphene for high performance oxygen reduction reaction[J]. Scientific Reports,2013,3:2771. doi: 10.1038/srep02771
    [113] Liu J H, Li W F, Duan L M, et al. A Graphene-like Oxygenated Carbon Nitride Material for Improved Cycle-Life Lithium/Sulfur Batteries[J]. Nano Letters,2015,15(8):5137-5142. doi: 10.1021/acs.nanolett.5b01919
    [114] Wang C H, Li Y B, He X D, et al. Cotton-derived bulk and fiber aerogels grafted with nitrogen-doped graphene[J]. Nanoscale,2015,7(17):7550-7558. doi: 10.1039/C5NR00996K
    [115] Zheng X, Cao X, Zeng K, et al. Cotton pad-derived large-area 3D N-doped graphene-like full carbon cathode with an O-rich functional group for flexible all solid Zn-air batteries[J]. Journal of Materials Chemistry A,2020,8(22):11202-11209. doi: 10.1039/D0TA00014K
    [116] Guan L, Pan L, Peng T, et al. Synthesis of Biomass-Derived Nitrogen-Doped Porous Carbon Nanosheests for High-Performance Supercapacitors[J]. ACS Sustainable Chemistry & Engineering,2019,7(9):8405-8412.
    [117] Shen Z F, Liu C L, Yin C C, et al. Facile large-scale synthesis of macroscopic 3D porous graphene-like carbon nanosheets architecture for efficient CO2 adsorption[J]. Carbon,2019,145:751-756. doi: 10.1016/j.carbon.2019.01.093
    [118] Ostrikov K, Levchenko I, Cvelbar U, et al. From nucleation to nanowires: a single-step process in reactive plasmas[J]. Nanoscale,2010,2(10):2012-2027. doi: 10.1039/c0nr00366b
    [119] Kato T, Hatakeyama R. Site-and alignment-controlled growth of graphene nanoribbons from nickel nanobars[J]. Nature Nanotechnology,2012,7(10):651-656. doi: 10.1038/nnano.2012.145
    [120] Seo D H, Yick S, Pineda S, et al. Single-Step, Plasma-Enabled Reforming of Natural Precursors into Vertical Graphene Electrodes with High Areal Capacitance[J]. ACS Sustainable Chemistry & Engineering,2015,3(3):544-551.
    [121] Jacob M V, Rawat R S, Ouyang B, et al. Catalyst-Free Plasma Enhanced Growth of Graphene from Sustainable Sources[J]. Nano Letters,2015,15(9):5702-5708. doi: 10.1021/acs.nanolett.5b01363
    [122] Seo D H, Han Z J, Kumar S, et al. Structure-Controlled, Vertical Graphene-Based, Binder-Free Electrodes from Plasma-Reformed Butter Enhance Supercapacitor Performance[J]. Advanced Materials,2013,3(10):1316-1323.
    [123] Seo D H, Rider A E, Han Z J, et al. Plasma Break-Down and Re-Build: Same Functional Vertical Graphenes from Diverse Natural Precursors[J]. Advanced Materials,2013,25(39):5638-5642. doi: 10.1002/adma201301510
    [124] Shah J, Lopez-Mercado J, Carreon M G, et al. Plasma Synthesis of Graphene from Mango Peel[J]. ACS Omega,2018,3(1):455-463. doi: 10.1021/acsomega.7b01825
    [125] Ye R, James D K, Tour J M. Laser-Induced Graphene: From Discovery to Translation[J]. Advanced Materials,2019,31(1):1803621. doi: 10.1002/adma.201803621
    [126] Wang F C, Wang K D, Zheng B X, et al. Laser-induced graphene: preparation, functionalization and applications[J]. Materials Technology,2018,33(5):340-356. doi: 10.1080/10667857.2018.1447265
    [127] Ye R, James D K, Tour J M. Laser-Induced Graphene[J]. Acc Chem Res,2018,51(7):1609-1620. doi: 10.1021/acs.accounts.8b00084
    [128] Ye R, Chyan Y, Zhang J, et al. Laser-Induced Graphene Formation on Wood[J]. Advanced Materials,2017,29(37):1702211. doi: 10.1002/adma.201702211
    [129] Chyan Y, Ye R, Li Y, et al. Laser-Induced Graphene by Multiple Lasing: Toward Electronics on Cloth, Paper, and Food[J]. ACS Nano,2018,12(3):2176-2183. doi: 10.1021/acsnano.7b08539
    [130] Abbas A, Mariana L T, Phan A N. Biomass-waste derived graphene quantum dots and their applications[J]. Carbon,2018,140:77-99. doi: 10.1016/j.carbon.2018.08.016
    [131] Bak S, Kim D, Lee H. Graphene quantum dots and their possible energy applications: A review[J]. Current Applied Physics,2016,16(9):1192-1201. doi: 10.1016/j.cap.2016.03.026
    [132] Kumawat M, Thakur M, Gurung R, et al. Graphene Quantum Dots from Mangifera indica: Application in Near-Infrared Bioimaging and Intracellular Nano-thermometry[J]. ACS Sustainable Chemistry & Engineering,2016,5(2):1382-1391.
    [133] Abbas A, Tabish T A, Bull S J, et al. High yield synthesis of graphene quantum dots from biomass waste as a highly selective probe for Fe3+sensing[J]. Scientific Reports,2020,10(1):21262. doi: 10.1038/s41598-020-78070-2
    [134] Hoang V C, Nguyen L H, Gomes V G. High efficiency supercapacitor derived from biomass based carbon dots and reduced graphene oxide composite[J]. Journal of Electroanalytical Chemistry,2019,832:87-96. doi: 10.1016/j.jelechem.2018.10.050
    [135] Atienzar P, Primo A, Lavorato C, et al. Preparation of graphene quantum dots from pyrolyzed alginate[J]. Langmuir,2013,29(20):6141-6146. doi: 10.1021/la400618s
    [136] Chen W F, Li D J, Tian L, et al. Synthesis of graphene quantum dots from natural polymer starch for cell imaging[J]. Green Chemistry,2018,20(19):4438-4442. doi: 10.1039/C8GC02106F
  • 加载中
图(15) / 表(8)
计量
  • 文章访问数:  56
  • HTML全文浏览量:  38
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-22
  • 修回日期:  2021-03-12
  • 网络出版日期:  2021-03-31
  • 刊出日期:  2021-04-01

目录

    /

    返回文章
    返回