留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Preparation of heteroatoms doped carboxylic acid functionalization carbon materials for efficient sorption of U(VI)

LIU Yan LIU Xiao-peng YING Dai WANG Yun YUAN Ding-zhong LIU Jin-biao CHEW Jia-wei

刘妍, 刘晓鹏, 戴荧, 王云, 袁定重, 刘晋彪, ChewJiawei. 杂原子掺杂的羧酸功能化碳材料制备及其有效吸附U(VI)的研究[J]. 新型炭材料. doi: 10.1016/S1872-5805(21)60023-24
引用本文: 刘妍, 刘晓鹏, 戴荧, 王云, 袁定重, 刘晋彪, ChewJiawei. 杂原子掺杂的羧酸功能化碳材料制备及其有效吸附U(VI)的研究[J]. 新型炭材料. doi: 10.1016/S1872-5805(21)60023-24
LIU Yan, LIU Xiao-peng, YING Dai, WANG Yun, YUAN Ding-zhong, LIU Jin-biao, CHEW Jia-wei. Preparation of heteroatoms doped carboxylic acid functionalization carbon materials for efficient sorption of U(VI)[J]. NEW CARBOM MATERIALS. doi: 10.1016/S1872-5805(21)60023-24
Citation: LIU Yan, LIU Xiao-peng, YING Dai, WANG Yun, YUAN Ding-zhong, LIU Jin-biao, CHEW Jia-wei. Preparation of heteroatoms doped carboxylic acid functionalization carbon materials for efficient sorption of U(VI)[J]. NEW CARBOM MATERIALS. doi: 10.1016/S1872-5805(21)60023-24

杂原子掺杂的羧酸功能化碳材料制备及其有效吸附U(VI)的研究

doi: 10.1016/S1872-5805(21)60023-24

Preparation of heteroatoms doped carboxylic acid functionalization carbon materials for efficient sorption of U(VI)

Funds: We appreciate the financial support from the National Natural Science Foundation of China (No.11705027, 21966005 ), the Jiangxi Provincial Natural Science Foundation (No.20202BABL203001, 20192BAB202007, 20192ACB21001), the Opening fund project of State Key Laboratory of Nuclear Resources and Environment, East China University of Technology (NRE1926)
More Information
  • 摘要: 该文通过煅烧前驱体聚磷腈,制备了掺杂N,P和O的羧基官能化碳材料(CS-COOH)。利用TEM,SEM,XPS和FTIR技术确定了CS-COOH的结构。此外该文还研究了CS-COOH从水溶液中吸附U(VI)的情况,结果表明,吸附动力学符合准二级动力学模型,通过Langmuir模型计算得到在298 K下材料的最大吸附量为402.9 mg/g。且CS-COOH在五次吸附-解吸循环后表现出良好的吸附结果。根据XPS分析,材料较好的U(VI)吸附能力主要归因于羧基及杂原子与铀酰离子之间的强共价键结合。
  • Figure  1.  Preparation of CS-COOH.

    Figure  2.  SEM, TEM and HRTEM images of (a, c) CS and (b, d-f) CS-COOH.

    Figure  3.  N2 adsorption-desorption isotherms of CS and amidate-CS.

    Figure  4.  (a) FTIR spectra of CS and CS-COOH; (b) high resolution XPS spectrum of CS-COOH.

    Figure  5.  (a) Effect of initial solution pH on the adsorption of U(VI) by CS and CS-COOH. (T = 298 K, m = 5 mg, C0 = 50 mg/L and V = 30 mL); (b) distribution of U(VI) species in aqueous solution with a total concentration of 50 mg/L and pH values ranging from 1 to 12 (calculated by using a Medusa program).

    Figure  6.  (a) Effect of (a) contact time (C0 = 50 mg/L) (b) initial concentration on the adsorption of U(VI) by CS and CS-COOH. (T = 298 K, m = 5 mg, V = 30 mL and pH = 6)

    Figure  7.  (a) Pseudo–first–order and (b) pseudo–second–order adsorption kinetics of U(VI) by CS and CS-COOH.

    Figure  8.  (a) Langmuir and (b) Freundlich isotherms of U(VI) adsorbed by CS and CS-COOH.

    Figure  9.  (a) Effect of temperature on the adsorption of U(VI) (m = 5 mg, V = 30 mL, C0 = 50 mg/L, t=180 min and pH = 6); (b) thermodynamics of U(VI) adsorption by CS and CS-COOH.

    Figure  10.  (a) Selective adsorption capacity of coexistent ions (C0 = 0.5 mmol/L); (b) Adsorption performance of U(VI) by CS-COOH over five cycles (C0 = 50 mg/L). (m = 5 mg, V = 30 mL, T = 298 K and pH = 6).

    Figure  11.  XPS survey spectra of (a) CS-COOH-U; (b) C1s; (c) O1s; (d) N1s; (e) P2p and (f) S2p.

    Figure  12.  FTIR spectra of CS-COOH and CS-COOH-U.

    Table  1.   Kinetic parameters for adsorption of U(VI) by CS and CS-COOH.

    Materialsqe,exp (mg/g)Pseudo-first-order modelPseudo-second-order model
    q1,cal (mg/g)k1 (/min)R2q2,cal (mg/g)k2 (g/mg·min)R2
    CS150.3498.698.21×10−30.905173.312.88×10−40.9764
    CS-COOH238.20190.493.34×10−20.939250.431.85×10−40.9957
    下载: 导出CSV

    Table  2.   Parameters of Langmuir and Freundlich isotherms for adsorption of U(VI) by CS and CS-COOH.

    MaterialsLangmuir isothermFreundlich isotherm
    KLqm (mg·g−1)R2KFnR2
    CS7.80229.360.99764.05×10−30.310.9423
    CS-COOH0.018402.900.922712.661.400.9033
    下载: 导出CSV

    Table  3.   The thermodynamic parameters for U(VI) adsorbed by CS and CS-COOH.

    MaterialsΔH (kJ·mol−1)ΔS (J·mol−1·
    K−1)
    ΔG (kJ·mol−1)
    288
    (K)
    298
    (K)
    303
    (K)
    313
    (K)
    318
    (K)
    CS49.82216.16−12.41−14.57−15.65−17.81−18.89
    CS−COOH7.7391.89−18.74−19.66−20.12−21.04−21.50
    下载: 导出CSV
  • [1] Christos C, Katerina P, Theodora K-C, et al. Uranium adsorption by polyvinylpyrrolidone/chitosan blended nanofibers[J]. Carbohydrate Polymers,2019,219:298-305. doi: 10.1016/j.carbpol.2019.05.041
    [2] Ananthanarayanan A, Songire P P, Khot S A, et al. Removal of Uranium from waste water by in-situ formation of magnetite from aerobic corrosion of mild steel[J]. Separation Science and Technology,2019,54(10):1599-1606. doi: 10.1080/01496395.2018.1555596
    [3] Liu Y, Zhao Z P, Yuan D Z, et al. Introduction of amino groups into polyphosphazene framework supported on CNT and coated Fe3O4 nanoparticles for enhanced selective U(VI) adsorption[J]. Applied Surface Science,2019,466:893-902. doi: 10.1016/j.apsusc.2018.10.097
    [4] Liu Y, Zhao Z P, Yuan D Z, et al. Fast and High Amount of U(VI) Uptake by Functional Magnetic Carbon Nanotubes with Phosphate Group[J]. Industrial & Engineering Chemistry Research,2018,57(43):14551-14560.
    [5] Liu Y, Dai Y, Yuan D Z, et al. The preparation of PZS-OH/CNT composite and its adsorption of U(VI) in aqueous solutions[J]. Journal of Radioanalytical and Nuclear Chemistry,2017,314:1747-1757. doi: 10.1007/s10967-017-5578-2
    [6] Zhang Z B, Dong Z M, Wang X X, et al. Synthesis of ultralight phosphorylated carbon aerogel for efficient removal of U(VI): Batch and fixed-bed column studies[J]. Chemical Engineering Journal,2019,370:1376-1387. doi: 10.1016/j.cej.2019.04.012
    [7] Gu B, Liang L, Dickey M. J, et al. Reductive precipitation of Uranium(VI) by zero-valent iron[J]. Environmental Science & Technology,1998,32:3366-3373.
    [8] Krawczyk-Bärsch E, Gerber U, Müller K, et al. Multidisciplinary characterization of U(VI) sequestration by Acidovorax facilis for bioremediation purposes[J]. Journal of Hazardous Materials,2018,347:233-241. doi: 10.1016/j.jhazmat.2017.12.030
    [9] Liu X N, Du P H, Pan W Y, et al. Immobilization of uranium(VI) by niobate/titanate nanoflakes heterojunction through combined adsorption and solar-light-driven photocatalytic reduction[J]. Applied Catalysis B: Environmental,2018,231:11-22. doi: 10.1016/j.apcatb.2018.02.062
    [10] Li Y, Wang L, Li B, et al. Pore-free matrix with cooperative chelating of hyperbranched ligands for highperformance separation of uranium[J]. ACS Applied Materials & Interfaces,2016,8:28853-28861.
    [11] Han X W, Wang Y Q, Cao X H, et al. Adsorptive performance of ship-type nano-cage polyoxometalates for U(VI) in aqueous solution[J]. Applied Surface Science,2019,484:1035-1040. doi: 10.1016/j.apsusc.2019.04.121
    [12] Wu Y H, Chen D Y, Kong L J, et al. Rapid and effective removal of uranium (VI) from aqueous solution by facile synthesized hierarchical hollow hydroxyapatite microspheres[J]. Journal of Hazardous Materials,2019,371:397-405. doi: 10.1016/j.jhazmat.2019.02.110
    [13] Yuan D Z, Zhang, S A, Xiang Z H, et al. Highly efficient removal of uranium from aqueous solution using a magnetic adsorbent bearing phosphine oxide ligand: a combined experimental and density functional theory study[J]. ACS Sustainable Chemistry & Engineering,2018,6(8):9619-9627.
    [14] Yuan D Z, Chen L, Xiong X, et al. Removal of uranium (VI) from aqueous solution by amidoxime functionalized superparamagnetic polymer microspheres prepared by a controlled radical polymerization in the presence of DPE[J]. Chemical Engineering Journal,2016,285:358-367. doi: 10.1016/j.cej.2015.10.014
    [15] Liu Y, Ouyang Y F, Huang D J, et al. N, P and S co-doped carbon materials derived from polyphosphazene for enhanced selective U(VI) adsorption[J]. Science of the Total Environment,2020,706:136019. doi: 10.1016/j.scitotenv.2019.136019
    [16] Hu Y, Zhao C, Yin L, et al. Combining batch technique with theoretical calculation studies to analyze the highly efcient enrichment of U (VI) and Eu(III) on magnetic MnFe2O4 nanocubes[J]. Chemical Engineering Journal,2018,349:347-357. doi: 10.1016/j.cej.2018.05.070
    [17] Park J, Bae J, Jin K, et al. Carboxylate-functionalized organic nanocrystals for high-capacity uranium sorbents[J]. Journal of Hazardous Materials,2019,371:243-252. doi: 10.1016/j.jhazmat.2019.03.007
    [18] Zhu J H, Liu Q, Liu J Y, et al. Ni-Mn LDH-decorated 3D Fe-inserted and N-doped carbon framework composites for efficient uranium(VI) removal[J]. Environmental Science: Nano,2018,5:467-475. doi: 10.1039/C7EN01018D
    [19] Chen X, Kierzek K, Jiang Z, et al. Synthesis, growth mechanism, and electrochemical properties of hollow mesoporous carbon spheres with controlled diameter[J]. Journal of Physical Chemistry C,2011,115:17717-17724. doi: 10.1021/jp205257u
    [20] Dubey S P, Dwivedi A D, Sillanpa M, et al. Single-step green synthesis of imine-functionalized carbon spheres and their application in uranium removal from aqueous solution[J]. RSC Advances,2014,4:46114-46121. doi: 10.1039/C4RA06890D
    [21] Elwakeel K Z, El-Bindary A A, Kouta E Y, et al. Functionalization of polyacrylonitrile/Na-Y-zeolite composite with amidoxime groups for the sorption of Cu(II), Cd(II) and Pb(II) metal ions[J]. Chemical Engineering Journal,2018,332:727-736. doi: 10.1016/j.cej.2017.09.091
    [22] Zhao L, Yu B, Xue F, et al. Facile hydrothermal preparation of recyclable S-doped graphene sponge for Cu2+adsorption[J]. Journal of Hazardous Materials,2015,286:449-456. doi: 10.1016/j.jhazmat.2015.01.021
    [23] Chen Z, Chen W Y, Jia D S et al. N, P, and S Codoped graphene-Like carbon nanosheets for ultrafast uranium (VI) capture with high capacity[J]. Advanced Science,2018,5:1800235. doi: 10.1002/advs.201800235
    [24] Gao Z, Huang X B, Chen K Y, et al. Heteroatom-enhanced the formation of mesoporous carbon microspheres with high surface area as supercapacitor electrode materials[J]. International Journal of Electrochemical Science,2017,12:10687-10700.
    [25] Li L, Huang S Y, Wen T, et al. Fabrication of carboxyl and amino functionalized carbonaceous microspheres and their enhanced adsorption behaviors of U(VI)[J]. Journal of Colloid and Interface Science,2019,543:225-236. doi: 10.1016/j.jcis.2019.02.060
    [26] Song Y, Wei G Y, Kopec M, et al. Copolymer-templated synthesis of nitrogen-doped mesoporous carbons for enhanced adsorption of hexavalent chromium and uranium[J]. ACS Applied Nano Materials,2018,1(6):2536-2543. doi: 10.1021/acsanm.8b00103
    [27] Smith B, Wepasnick K, Schrote K E, et al. Colloidal properties of aqueous suspensions of acid-treated, multi-walled carbon nanotubes[J]. Environental Science & Technology,2009,43:819-825.
    [28] Hamzaa M F, Wei Y Z, Mirac H I, et al. Synthesis and adsorption characteristics of grafted hydrazinyl amine magnetite-chitosan for Ni(II) and Pb(II) recovery[J]. Chemical Engineering Journal,2019,362:310-324. doi: 10.1016/j.cej.2018.11.225
    [29] Liu H, Wei Y F, Luo J M, et al. 3D hierarchical porous-structured biochar aerogel for rapid and efficient phenicol antibiotics removal from water[J]. Chemical Engineering Journal,2019,368:639-648. doi: 10.1016/j.cej.2019.03.007
    [30] Cheng Y X, He P, Dong F Q, et al. Polyamine and amidoxime groups modified bifunctional polyacrylonitrilebased ion exchange fibers for highly efficient extraction of U(VI) from real uranium mine water[J]. Chemical Engineering Journal,2019,367:198-207. doi: 10.1016/j.cej.2019.02.149
    [31] Zhao D L, Wang Y Y, Zhao S Y, et al. A simple method for preparing ultra-light graphene aerogel for rapid removal of U(VI) from aqueous solution[J]. Environmental Pollution,2019,251:547-554. doi: 10.1016/j.envpol.2019.05.011
    [32] Cai Y W, Wang X, Feng J H, et al. Fully phosphorylated 3D graphene oxide foam for the significantly enhanced U(VI) sequestration[J]. Environmental Pollution,2019,249:434-442. doi: 10.1016/j.envpol.2019.03.013
    [33] Paul A J, Sherwood P M. An X-ray photoelectron spectroscopic study of some ammonium uranates[J]. Applied Spectroscopy,1986,40:519-525. doi: 10.1366/0003702864508872
    [34] Wersin P, Hochella Jr M F, Persson P, et al. Interaction between aqueous uranium(VI) and sulfide minerals: spectroscopic evidence for sorption and reduction[J]. Geochimica Et Cosmochimica Acta,1994,58:2829-2843. doi: 10.1016/0016-7037(94)90117-1
    [35] Schindler M, Hawthorne F, Freund M, et al. XPS spectra of uranyl minerals and synthetic uranyl compounds. I: the U 4f spectrum[J]. Geochimica Et Cosmochimica Acta,2009,73:2471-2487. doi: 10.1016/j.gca.2008.10.042
    [36] Liu W, Zhang S K, Dar S U, et al. Polyphosphazene-derived heteroatoms-doped carbon materials for supercapacitor electrodes[J]. Carbon,2018,129:420-427. doi: 10.1016/j.carbon.2017.12.016
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  42
  • HTML全文浏览量:  10
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-01
  • 修回日期:  2021-01-01
  • 网络出版日期:  2021-03-25

目录

    /

    返回文章
    返回