Preparation of heteroatoms doped carboxylic acid functionalization carbon materials for efficient sorption of U(VI)
-
摘要: 该文通过煅烧前驱体聚磷腈,制备了掺杂N,P和O的羧基官能化碳材料(CS-COOH)。利用TEM,SEM,XPS和FTIR技术确定了CS-COOH的结构。此外该文还研究了CS-COOH从水溶液中吸附U(VI)的情况,结果表明,吸附动力学符合准二级动力学模型,通过Langmuir模型计算得到在298 K下材料的最大吸附量为402.9 mg/g。且CS-COOH在五次吸附-解吸循环后表现出良好的吸附结果。根据XPS分析,材料较好的U(VI)吸附能力主要归因于羧基及杂原子与铀酰离子之间的强共价键结合。Abstract: In this work, carboxyl-functionalized carbonaceous material doped with N, P and O (denoted as CS-COOH) was fabricated by calcining a precursor, polyphosphazene, for adsorption applications. Employing TEM, SEM, XPS and FTIR techniques, the structure of CS-COOH was determined. The CS-COOH was also investigated for the adsorption of U(VI) from an aqueous solution. The results show that the adsorption kinetics was fitted well by the pseudo-second-order model and the maximum adsorption capacity determined by the Langmuir model at 298 K was 402.9 mg/g. In addition, the CS-COOH exhibited good adsorption results after five adsorption-desorption cycles. According to the XPS analysis, the enhanced U(VI) adsorption capacity was mainly attributed to the carboxyl groups and strong covalent bonds between heteroatoms with uranyl ions.
-
Key words:
- Polyphosphazene /
- carboxyl /
- uranium /
- adsorption /
- heteroatoms
-
Figure 5. (a) Effect of initial solution pH on the adsorption of U(VI) by CS and CS-COOH. (T = 298 K, m = 5 mg, C0 = 50 mg/L and V = 30 mL); (b) distribution of U(VI) species in aqueous solution with a total concentration of 50 mg/L and pH values ranging from 1 to 12 (calculated by using a Medusa program).
Table 1. Kinetic parameters for adsorption of U(VI) by CS and CS-COOH.
Materials qe,exp (mg/g) Pseudo-first-order model Pseudo-second-order model q1,cal (mg/g) k1 (/min) R2 q2,cal (mg/g) k2 (g/mg·min) R2 CS 150.34 98.69 8.21×10−3 0.905 173.31 2.88×10−4 0.9764 CS-COOH 238.20 190.49 3.34×10−2 0.939 250.43 1.85×10−4 0.9957 Table 2. Parameters of Langmuir and Freundlich isotherms for adsorption of U(VI) by CS and CS-COOH.
Materials Langmuir isotherm Freundlich isotherm KL qm (mg·g−1) R2 KF n R2 CS 7.80 229.36 0.9976 4.05×10−3 0.31 0.9423 CS-COOH 0.018 402.90 0.9227 12.66 1.40 0.9033 Table 3. The thermodynamic parameters for U(VI) adsorbed by CS and CS-COOH.
Materials ΔH (kJ·mol−1) ΔS (J·mol−1·
K−1)ΔG (kJ·mol−1) 288
(K)298
(K)303
(K)313
(K)318
(K)CS 49.82 216.16 −12.41 −14.57 −15.65 −17.81 −18.89 CS−COOH 7.73 91.89 −18.74 −19.66 −20.12 −21.04 −21.50 -
[1] Christos C, Katerina P, Theodora K-C, et al. Uranium adsorption by polyvinylpyrrolidone/chitosan blended nanofibers[J]. Carbohydrate Polymers,2019,219:298-305. doi: 10.1016/j.carbpol.2019.05.041 [2] Ananthanarayanan A, Songire P P, Khot S A, et al. Removal of Uranium from waste water by in-situ formation of magnetite from aerobic corrosion of mild steel[J]. Separation Science and Technology,2019,54(10):1599-1606. doi: 10.1080/01496395.2018.1555596 [3] Liu Y, Zhao Z P, Yuan D Z, et al. Introduction of amino groups into polyphosphazene framework supported on CNT and coated Fe3O4 nanoparticles for enhanced selective U(VI) adsorption[J]. Applied Surface Science,2019,466:893-902. doi: 10.1016/j.apsusc.2018.10.097 [4] Liu Y, Zhao Z P, Yuan D Z, et al. Fast and High Amount of U(VI) Uptake by Functional Magnetic Carbon Nanotubes with Phosphate Group[J]. Industrial & Engineering Chemistry Research,2018,57(43):14551-14560. [5] Liu Y, Dai Y, Yuan D Z, et al. The preparation of PZS-OH/CNT composite and its adsorption of U(VI) in aqueous solutions[J]. Journal of Radioanalytical and Nuclear Chemistry,2017,314:1747-1757. doi: 10.1007/s10967-017-5578-2 [6] Zhang Z B, Dong Z M, Wang X X, et al. Synthesis of ultralight phosphorylated carbon aerogel for efficient removal of U(VI): Batch and fixed-bed column studies[J]. Chemical Engineering Journal,2019,370:1376-1387. doi: 10.1016/j.cej.2019.04.012 [7] Gu B, Liang L, Dickey M. J, et al. Reductive precipitation of Uranium(VI) by zero-valent iron[J]. Environmental Science & Technology,1998,32:3366-3373. [8] Krawczyk-Bärsch E, Gerber U, Müller K, et al. Multidisciplinary characterization of U(VI) sequestration by Acidovorax facilis for bioremediation purposes[J]. Journal of Hazardous Materials,2018,347:233-241. doi: 10.1016/j.jhazmat.2017.12.030 [9] Liu X N, Du P H, Pan W Y, et al. Immobilization of uranium(VI) by niobate/titanate nanoflakes heterojunction through combined adsorption and solar-light-driven photocatalytic reduction[J]. Applied Catalysis B: Environmental,2018,231:11-22. doi: 10.1016/j.apcatb.2018.02.062 [10] Li Y, Wang L, Li B, et al. Pore-free matrix with cooperative chelating of hyperbranched ligands for highperformance separation of uranium[J]. ACS Applied Materials & Interfaces,2016,8:28853-28861. [11] Han X W, Wang Y Q, Cao X H, et al. Adsorptive performance of ship-type nano-cage polyoxometalates for U(VI) in aqueous solution[J]. Applied Surface Science,2019,484:1035-1040. doi: 10.1016/j.apsusc.2019.04.121 [12] Wu Y H, Chen D Y, Kong L J, et al. Rapid and effective removal of uranium (VI) from aqueous solution by facile synthesized hierarchical hollow hydroxyapatite microspheres[J]. Journal of Hazardous Materials,2019,371:397-405. doi: 10.1016/j.jhazmat.2019.02.110 [13] Yuan D Z, Zhang, S A, Xiang Z H, et al. Highly efficient removal of uranium from aqueous solution using a magnetic adsorbent bearing phosphine oxide ligand: a combined experimental and density functional theory study[J]. ACS Sustainable Chemistry & Engineering,2018,6(8):9619-9627. [14] Yuan D Z, Chen L, Xiong X, et al. Removal of uranium (VI) from aqueous solution by amidoxime functionalized superparamagnetic polymer microspheres prepared by a controlled radical polymerization in the presence of DPE[J]. Chemical Engineering Journal,2016,285:358-367. doi: 10.1016/j.cej.2015.10.014 [15] Liu Y, Ouyang Y F, Huang D J, et al. N, P and S co-doped carbon materials derived from polyphosphazene for enhanced selective U(VI) adsorption[J]. Science of the Total Environment,2020,706:136019. doi: 10.1016/j.scitotenv.2019.136019 [16] Hu Y, Zhao C, Yin L, et al. Combining batch technique with theoretical calculation studies to analyze the highly efcient enrichment of U (VI) and Eu(III) on magnetic MnFe2O4 nanocubes[J]. Chemical Engineering Journal,2018,349:347-357. doi: 10.1016/j.cej.2018.05.070 [17] Park J, Bae J, Jin K, et al. Carboxylate-functionalized organic nanocrystals for high-capacity uranium sorbents[J]. Journal of Hazardous Materials,2019,371:243-252. doi: 10.1016/j.jhazmat.2019.03.007 [18] Zhu J H, Liu Q, Liu J Y, et al. Ni-Mn LDH-decorated 3D Fe-inserted and N-doped carbon framework composites for efficient uranium(VI) removal[J]. Environmental Science: Nano,2018,5:467-475. doi: 10.1039/C7EN01018D [19] Chen X, Kierzek K, Jiang Z, et al. Synthesis, growth mechanism, and electrochemical properties of hollow mesoporous carbon spheres with controlled diameter[J]. Journal of Physical Chemistry C,2011,115:17717-17724. doi: 10.1021/jp205257u [20] Dubey S P, Dwivedi A D, Sillanpa M, et al. Single-step green synthesis of imine-functionalized carbon spheres and their application in uranium removal from aqueous solution[J]. RSC Advances,2014,4:46114-46121. doi: 10.1039/C4RA06890D [21] Elwakeel K Z, El-Bindary A A, Kouta E Y, et al. Functionalization of polyacrylonitrile/Na-Y-zeolite composite with amidoxime groups for the sorption of Cu(II), Cd(II) and Pb(II) metal ions[J]. Chemical Engineering Journal,2018,332:727-736. doi: 10.1016/j.cej.2017.09.091 [22] Zhao L, Yu B, Xue F, et al. Facile hydrothermal preparation of recyclable S-doped graphene sponge for Cu2+adsorption[J]. Journal of Hazardous Materials,2015,286:449-456. doi: 10.1016/j.jhazmat.2015.01.021 [23] Chen Z, Chen W Y, Jia D S et al. N, P, and S Codoped graphene-Like carbon nanosheets for ultrafast uranium (VI) capture with high capacity[J]. Advanced Science,2018,5:1800235. doi: 10.1002/advs.201800235 [24] Gao Z, Huang X B, Chen K Y, et al. Heteroatom-enhanced the formation of mesoporous carbon microspheres with high surface area as supercapacitor electrode materials[J]. International Journal of Electrochemical Science,2017,12:10687-10700. [25] Li L, Huang S Y, Wen T, et al. Fabrication of carboxyl and amino functionalized carbonaceous microspheres and their enhanced adsorption behaviors of U(VI)[J]. Journal of Colloid and Interface Science,2019,543:225-236. doi: 10.1016/j.jcis.2019.02.060 [26] Song Y, Wei G Y, Kopec M, et al. Copolymer-templated synthesis of nitrogen-doped mesoporous carbons for enhanced adsorption of hexavalent chromium and uranium[J]. ACS Applied Nano Materials,2018,1(6):2536-2543. doi: 10.1021/acsanm.8b00103 [27] Smith B, Wepasnick K, Schrote K E, et al. Colloidal properties of aqueous suspensions of acid-treated, multi-walled carbon nanotubes[J]. Environental Science & Technology,2009,43:819-825. [28] Hamzaa M F, Wei Y Z, Mirac H I, et al. Synthesis and adsorption characteristics of grafted hydrazinyl amine magnetite-chitosan for Ni(II) and Pb(II) recovery[J]. Chemical Engineering Journal,2019,362:310-324. doi: 10.1016/j.cej.2018.11.225 [29] Liu H, Wei Y F, Luo J M, et al. 3D hierarchical porous-structured biochar aerogel for rapid and efficient phenicol antibiotics removal from water[J]. Chemical Engineering Journal,2019,368:639-648. doi: 10.1016/j.cej.2019.03.007 [30] Cheng Y X, He P, Dong F Q, et al. Polyamine and amidoxime groups modified bifunctional polyacrylonitrilebased ion exchange fibers for highly efficient extraction of U(VI) from real uranium mine water[J]. Chemical Engineering Journal,2019,367:198-207. doi: 10.1016/j.cej.2019.02.149 [31] Zhao D L, Wang Y Y, Zhao S Y, et al. A simple method for preparing ultra-light graphene aerogel for rapid removal of U(VI) from aqueous solution[J]. Environmental Pollution,2019,251:547-554. doi: 10.1016/j.envpol.2019.05.011 [32] Cai Y W, Wang X, Feng J H, et al. Fully phosphorylated 3D graphene oxide foam for the significantly enhanced U(VI) sequestration[J]. Environmental Pollution,2019,249:434-442. doi: 10.1016/j.envpol.2019.03.013 [33] Paul A J, Sherwood P M. An X-ray photoelectron spectroscopic study of some ammonium uranates[J]. Applied Spectroscopy,1986,40:519-525. doi: 10.1366/0003702864508872 [34] Wersin P, Hochella Jr M F, Persson P, et al. Interaction between aqueous uranium(VI) and sulfide minerals: spectroscopic evidence for sorption and reduction[J]. Geochimica Et Cosmochimica Acta,1994,58:2829-2843. doi: 10.1016/0016-7037(94)90117-1 [35] Schindler M, Hawthorne F, Freund M, et al. XPS spectra of uranyl minerals and synthetic uranyl compounds. I: the U 4f spectrum[J]. Geochimica Et Cosmochimica Acta,2009,73:2471-2487. doi: 10.1016/j.gca.2008.10.042 [36] Liu W, Zhang S K, Dar S U, et al. Polyphosphazene-derived heteroatoms-doped carbon materials for supercapacitor electrodes[J]. Carbon,2018,129:420-427. doi: 10.1016/j.carbon.2017.12.016 -