留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Size-controlled synthesis of carbon microspheres from resorcinol/formaldehyde for high electrochemical performance

DU Xu YANG Hui-Min ZHANG Yan-Lan HU Qing-Cheng LI Song-Bo HE Wen-Xiu

杜旭, 杨慧敏, 张研兰, 胡庆成, 李松波, 赫文秀. 间苯二酚/甲醛高电化学性能炭微球的尺寸控制合成[J]. 新型炭材料. doi: 10.1016/S1872-5805(21)60023-26
引用本文: 杜旭, 杨慧敏, 张研兰, 胡庆成, 李松波, 赫文秀. 间苯二酚/甲醛高电化学性能炭微球的尺寸控制合成[J]. 新型炭材料. doi: 10.1016/S1872-5805(21)60023-26
DU Xu, YANG Hui-Min, ZHANG Yan-Lan, HU Qing-Cheng, LI Song-Bo, HE Wen-Xiu. Size-controlled synthesis of carbon microspheres from resorcinol/formaldehyde for high electrochemical performance[J]. NEW CARBOM MATERIALS. doi: 10.1016/S1872-5805(21)60023-26
Citation: DU Xu, YANG Hui-Min, ZHANG Yan-Lan, HU Qing-Cheng, LI Song-Bo, HE Wen-Xiu. Size-controlled synthesis of carbon microspheres from resorcinol/formaldehyde for high electrochemical performance[J]. NEW CARBOM MATERIALS. doi: 10.1016/S1872-5805(21)60023-26

间苯二酚/甲醛高电化学性能炭微球的尺寸控制合成

doi: 10.1016/S1872-5805(21)60023-26
详细信息
  • 中图分类号: 064

Size-controlled synthesis of carbon microspheres from resorcinol/formaldehyde for high electrochemical performance

Funds: This work was supported by National Natural Science Foundation of China (21902080, 41763007)
More Information
  • 摘要: 纳米结构酚醛树脂基炭气凝胶具有丰富的网络结构,是理想的超级电容器储能材料。然而,目前已合成出的大多数炭气凝胶为块状材料且其储能量较低,使得其无法实现应用。本文采用水热合成的方法成功地合成出酚醛树脂基多孔炭球。有趣的是,通过SEM、BET、XPS等多种表征手段,发现铵基数目、烷基链长度和水热温度对炭球的孔结构、尺寸和均匀性有重要的调控作用。另外,研究还发现前体聚合过程中NH+ 4是形成炭球的必要条件,同时发现改变参数对多孔炭球的晶体结构无明显影响。将所制备的材料应用在电化学储能中发现,在电流密度为1.0 A g−1时,样品CN-80的性能最好,其最高比电容为233.8 F g−1。结果表明,碳材料大的比表面积、孔隙率和缺陷可能是提高电极电容的关键因素。同时,CN-80在7 A g−1下10000次充放电循环后,其电容保持率为98%,表明其具有良好的循环稳定性。
  • Figure  1.  SEM images of the of CN-80(a,d), CE-80(b,e) and CD-80(c,f) at different magnifications.

    Figure  2.  SEM images of the (a) CN-70, (b) CN-80 and (c) CN-90.

    Figure  3.  (a) Nitrogen adsorption-desorption isotherms of the samples, (b) their pore size distribution and (c) enlarged image of pore size distribution

    Figure  4.  (a) The TG curves, (b) XRD patterns and (c) Raman patterns of the CN-80, CE-80 and CD-80.

    Figure  5.  (a) XPS spectra of the CN-80, CE-80 and CD-80 and the corresponding high resolution O1s peaks (b), (c) and(d).

    Figure  6.  (a) Comparison of CV curves of CN-80, CE-80 and CD-80 at 100mV s−1and (b) Comparison of GCD curves of CN-80, CE-80 and CD-80 at 1A g−1. (c) CN-80 at different scan rates and (d) CN-80 at different current densities. (e) Specific capacitance of CN-80, CE-80 and CD-80 at various current densities. (f) Cycling performance of CN-80 at a current density of 7A g−1.

    Figure  7.  EIS images of CN-80, CE-80 and CD-80

  • [1] Guerrero, M. A.; Romero, E.; Barrero, F.; et al. Supercapacitors: Alternative Energy Storage Systems[J]. Przeglad Elektrotechniczny,2009,85:188-195.
    [2] Akram, U.; Nadarajah, M.; Shah, R.; et al. A review on rapid responsive energy storage technologies for frequency regulation in modern power systems[J]. Renewable & Sustainable Energy Reviews,2020,120:1-10.
    [3] Choudhary, N.; Li, C.; Moore, J.; et al. Asymmetric Supercapacitor Electrodes and Devices[J]. Adv. Mater.,2017,29:1-30.
    [4] Zhai, Y.; Dou, Y.; Zhao, D.; et al. Carbon Materials for Chemical Capacitive Energy Storage[J]. Adv. Mater.,2011,23:4828-4850. doi: 10.1002/adma.201100984
    [5] Dubey, R.; Guruviah, V. Review of carbon-based electrode materials for supercapacitor energy storage[J]. Ionics,2019,25:1419-1445. doi: 10.1007/s11581-019-02874-0
    [6] Iro, Z. S.; Subramani, C.; Dash, S. S. A Brief Review on Electrode Materials for Supercapacitor[J]. International Journal of Electrochemical Science,2016,11:10628-10643.
    [7] Kesavan, T.; Partheeban, T.; Vivekanantha, M.; et al. Hierarchical nanoporous activated carbon as potential electrode materials for high performance electrochemical supercapacitor[J]. Microporous Mesoporous Mater.,2019,274:236-244. doi: 10.1016/j.micromeso.2018.08.006
    [8] Wei, F.; Zhang, H.-f.; He, X.-j.; et al. Synthesis of porous carbons from coal tar pitch for high-performance supercapacitors[J]. New Carbon Materials,2019,34:132-139. doi: 10.1016/S1872-5805(19)60006-5
    [9] Wang, B.; Ruan, T.; Chen, Y.; et al. Graphene-based composites for electrochemical energy storage[J]. Energy Storage Materials,2020,24:22-51. doi: 10.1016/j.ensm.2019.08.004
    [10] Li, F.; Xie, L. J.; Sun, G. H.; et al. Resorcinol-formaldehyde based carbon aerogel: Preparation, structure and applications in energy storage devices[J]. Microporous Mesoporous Mater.,2019,279:293-315. doi: 10.1016/j.micromeso.2018.12.007
    [11] Zhou, X.-L.; Zhang, H.; Shao, L.-M.; et al. Preparation and Application of Hierarchical Porous Carbon Materials from Waste and Biomass: A Review[J]. Waste and Biomass Valorization,2020,186:1-26.
    [12] Guan, L.; Pan, L.; Peng, T.; et al. Green and scalable synthesis of porous carbon nanosheet-assembled hierarchical architectures for robust capacitive energy harvesting[J]. Carbon,2019,152:537-544. doi: 10.1016/j.carbon.2019.06.059
    [13] Chen, A.; Wang, Y.; Yu, Y.; et al. Nitrogen-doped hollow carbon spheres for supercapacitors[J]. Journal of Materials Science,2017,52:3153-3161. doi: 10.1007/s10853-016-0604-2
    [14] Du, J.; Chen, A.; Liu, L.; et al. N-doped hollow mesoporous carbon spheres prepared by polybenzoxazines precursor for energy storage[J]. Carbon,2020,160:265-272. doi: 10.1016/j.carbon.2020.01.018
    [15] Liu, H.; Zhao, D.; Gong, G.; et al. Effect of Temperature on Morphology and Supercapacitor Performance of Carbon Nano-spheres[J]. Chemical Journal of Chinese Universities-Chinese,2019,40:18-23.
    [16] Chen, S.; Xing, W.; Duan, J.; et al. Nanostructured morphology control for efficient supercapacitor electrodes[J]. Journal of Materials Chemistry A,2013,1:2941-2954. doi: 10.1039/C2TA00627H
    [17] Wang, P.; Zhang, H.; Wang, H.; et al. Hybrid Manufacturing of 3D Hierarchical Porous Carbons for Electrochemical Storage[J]. Advanced Materials Technologies,2020,5:1-11.
    [18] Jayaramulu, K.; Dubal, D. P.; Nagar, B.; et al. Ultrathin Hierarchical Porous Carbon Nanosheets for High-Performance Supercapacitors and Redox Electrolyte Energy Storage[J]. Adv. Mater.,2018,30:1-9.
    [19] Li, H.; Guo, H.; Tong, S.; et al. High-performance supercapacitor carbon electrode fabricated by large-scale roll-to-roll micro-gravure printing[J]. Journal of Physics D-Applied Physics,2019,52:115501-115511. doi: 10.1088/1361-6463/aafbf3
    [20] Sun, W.; Zhang, Y.; Yang, Z.; et al. High-performance activated carbons for electrochemical double layer capacitors: Effects of morphology and porous structures[J]. International Journal of Energy Research,2020,44:1930-1950. doi: 10.1002/er.5047
    [21] Du, J.; Zong, S.; Zhang, Y.; et al. Co-assembly strategy for uniform and tunable hollow carbon spheres with supercapacitor application[J]. J. Colloid Interface Sci.,2020,565:245-253. doi: 10.1016/j.jcis.2020.01.021
    [22] Du, J.; Chen, A.; Liu, L.; et al. N-doped hollow mesoporous carbon spheres prepared by polybenzoxazines precursor for energy storage[J]. Carbon,2020,160:265-272. doi: 10.1016/j.carbon.2020.01.018
    [23] Du, J.; Liu, L.; Zhang, Y.; et al. Rich porous dual-shell carbon spheres by dissolution-reassembly with high performance in supercapacitor[J]. Journal of Energy Storage,2020,29:101375-101382. doi: 10.1016/j.est.2020.101375
    [24] Zhang, C.; Wang, Y.; Wu, X. Progress on application of biomass-based porous carbon in supercapacitors[J]. Modern Chemical Industry,2020,40:27-29, 35.
    [25] Guan, L.; Pan, L.; Peng, T.; et al. Synthesis of Biomass-Derived Nitrogen-Doped Porous Carbon Nanosheests for High-Performance Supercapacitors[J]. Acs Sustainable Chemistry & Engineering,2019,7:8405-8412.
    [26] Wu, J.; Xia, M.; Zhang, X.; et al. Hierarchical porous carbon derived from wood tar using crab as the template: Performance on supercapacitor[J]. J. Power Sources,2020,455:227982-227991. doi: 10.1016/j.jpowsour.2020.227982
    [27] Jiang, C.; Yakaboylu, G. A.; Yumak, T.; et al. Activated carbons prepared by indirect and direct CO2 activation of lignocellulosic biomass for supercapacitor electrodes[J]. Renewable Energy,2020,155:38-52. doi: 10.1016/j.renene.2020.03.111
    [28] Ma, C.; Chen, X.; Long, D.; et al. High-surface-area and high-nitrogen-content carbon microspheres prepared by a pre-oxidation and mild KOH activation for superior supercapacitor[J]. Carbon,2017,118:699-708. doi: 10.1016/j.carbon.2017.03.075
    [29] Guo, J.; Wu, D.; Wang, T.; et al. P-doped hierarchical porous carbon aerogels derived from phenolic resins for high performance supercapacitor[J]. Appl. Surf. Sci.,2019,475:56-66. doi: 10.1016/j.apsusc.2018.12.095
    [30] Zhu, D.; Wang, Y.; Lu, W.; et al. A novel synthesis of hierarchical porous carbons from interpenetrating polymer networks for high performance supercapacitor electrodes[J]. Carbon,2017,111:667-674. doi: 10.1016/j.carbon.2016.10.016
    [31] Wang, Y.; Chang, B.; Guan, D.; et al. Mesoporous activated carbon spheres derived from resorcinol-formaldehyde resin with high performance for supercapacitors[J]. J. Solid State Electrochem.,2015,19:1783-1791. doi: 10.1007/s10008-015-2789-8
    [32] Lee, J.-H.; Park, S.-J. Recent advances in preparations and applications of carbon aerogels: A review[J]. Carbon,2020,163:1-18. doi: 10.1016/j.carbon.2020.02.073
    [33] Yan, T.; Wan, Z.; Wang, K.; et al. A 3D Carbon Foam Derived from Phenol Resin via CsCl Soft-Templating Approach for High-Performance Supercapacitor[J]. Energy Technology,2020,8:1301-1308.
    [34] Liu, M.; Zhao, F.; Zhu, D.; et al. Ultramicroporous carbon nanoparticles derived from metal-organic framework nanoparticles for high-performance supercapacitors[J]. Mater. Chem. Phys.,2018,211:234-241. doi: 10.1016/j.matchemphys.2018.02.030
    [35] Chen, M.; Xuan, H.; Zheng, X.; et al. N-doped mesoporous carbon by a hard-template strategy associated with chemical activation and its enhanced supercapacitance performance[J]. Electrochim. Acta,2017,238:269-277. doi: 10.1016/j.electacta.2017.04.034
    [36] Ariga, K.; Nishikawa, M.; Mori, T.; et al. Self-assembly as a key player for materials nanoarchitectonics[J]. Science and Technology of Advanced Materials,2019,20:51-95. doi: 10.1080/14686996.2018.1553108
    [37] Wu, W.; Yi, Y.; Wang, T.; et al. Coordination-Self-Assembly Approach toward Aggregation-Free Metal Nanoparticles in Ordered Mesoporous Carbons[J]. Chemelectrochem,2019,6:724-730. doi: 10.1002/celc.201801452
    [38] Rey-Raap, N.; Enterria, M.; Martins, J. I.; et al. Influence of Multiwalled Carbon Nanotubes as Additives in Biomass-Derived Carbons for Supercapacitor Applications[J]. Acs Applied Materials & Interfaces,2019,11:6066-6077.
    [39] Zhang, P.; Liu, M.; Liu, S. N-doped honeycomb-like hierarchical porous carbon foams for supercapacitor applications with different PC/RF mass ratios[J]. Journal of Materials Science-Materials in Electronics,2020,31:3519-3528. doi: 10.1007/s10854-020-02900-2
    [40] Qi, X.; Lin, T.; Zhang, S.; et al. Nitrogen doped hierarchical porous hard carbon derived from a facial Ti-peroxy-initiating in-situ polymerization and its application in electrochemical capacitors[J]. Microporous Mesoporous Mater.,2020,294:1-7.
    [41] Yang, B.; Zhang, D.; He, J.; et al. Simple and green fabrication of a biomass-derived N and O self-doped hierarchical porous carbon via a self-activation route for supercapacitor application[J]. Carbon Letters,2020,23:1-11.
    [42] Ling, Z.; Wang, Z.; Zhang, M.; et al. Sustainable Synthesis and Assembly of Biomass-Derived B/N Co-Doped Carbon Nanosheets with Ultrahigh Aspect Ratio for High-Performance Supercapacitors[J]. Adv. Funct. Mater.,2016,26:111-119. doi: 10.1002/adfm.201504004
    [43] Lombardo, A. G.; Simon, B. A.; Taiwo, O.; et al. A pore network model of porous electrodes in electrochemical devices[J]. Journal of Energy Storage,2019,24:1-17.
    [44] Platek, A.; Piwek, J.; Fic, K.; et al. Ageing mechanisms in electrochemical capacitors with aqueous redox-active electrolytes[J]. Electrochim. Acta,2019,311:211-220. doi: 10.1016/j.electacta.2019.04.117
    [45] Neal, J. N.; Wesolowski, D. J.; Henderson, D.; et al. Electric double layer capacitance for ionic liquids in nanoporous electrodes: Effects of pore size and ion composition[J]. J. Mol. Liq.,2018,270:145-150. doi: 10.1016/j.molliq.2017.10.128
    [46] Liu, J.; Qiao, S. Z.; Liu, H.; et al. Extension of the Stober method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres[J]. Angew Chem Int Ed Engl,2011,50:5947-5951. doi: 10.1002/anie.201102011
    [47] Job, N.; Thery, A.; Pirard, R.; et al. Carbon aerogels, cryogels and xerogels: Influence of the drying method on the textural properties of porous carbon materials[J]. Carbon,2005,43:2481-2494. doi: 10.1016/j.carbon.2005.04.031
    [48] Garrido, R.; Silvestre, J. D.; Flores-Colen, I.; et al. Economic assessment of the production of subcritically dried silica-based aerogels[J]. J. Non-Cryst. Solids,2019,516:26-34. doi: 10.1016/j.jnoncrysol.2019.04.016
  • 加载中
图(7)
计量
  • 文章访问数:  9
  • HTML全文浏览量:  3
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-01
  • 修回日期:  2021-01-01
  • 网络出版日期:  2021-04-02

目录

    /

    返回文章
    返回