留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Carbon quantum dots: Synthesis and correlation of luminescence behavior with microstructure

FANG Li-yang ZHENG Jing-tang

方黎洋, 郑经堂. 碳量子点:不同发光行为原因分析及其性能. 新型炭材料, 2021, 36(3): 625-631. doi: 10.1016/S1872-5805(21)60031-8
引用本文: 方黎洋, 郑经堂. 碳量子点:不同发光行为原因分析及其性能. 新型炭材料, 2021, 36(3): 625-631. doi: 10.1016/S1872-5805(21)60031-8
FANG Li-yang, ZHENG Jing-tang. Carbon quantum dots: Synthesis and correlation of luminescence behavior with microstructure. New Carbon Mater., 2021, 36(3): 625-631. doi: 10.1016/S1872-5805(21)60031-8
Citation: FANG Li-yang, ZHENG Jing-tang. Carbon quantum dots: Synthesis and correlation of luminescence behavior with microstructure. New Carbon Mater., 2021, 36(3): 625-631. doi: 10.1016/S1872-5805(21)60031-8

碳量子点:不同发光行为原因分析及其性能

doi: 10.1016/S1872-5805(21)60031-8
基金项目: 山东潍坊市科学技术发展计划项目(2018GX106)
详细信息
    通讯作者:

    郑经堂,教授. E-mail:jtzheng03@163.com

  • 中图分类号: TQ127.1+1

Carbon quantum dots: Synthesis and correlation of luminescence behavior with microstructure

Funds: This work is financially supported by the Science Development Plan Project of Weifang City, Shandong Province, China (No. 2018GX106)
More Information
  • 摘要: 以柠檬酸铵为原料采用一步水热法,通过改变反应温度合成出了两种分别具有激发波长独立和激发波长依赖荧光的碳量子点。通过考察两类碳量子点的物理、化学性质以及光学性能,可以推断碳点的结构与荧光发射之间的关系,最终研究碳量子点产生不同发光行为的原因。结果发现升高合成温度可以在碳量子点中引入更多的氧、氮杂原子,增加了结构缺陷(杂原子的化学态)的总量,并调变了各类化学态含量比。正是由于两种碳量子点的结构缺陷含量比例的不同,导致了碳量子点发光行为不同。合成温度高的碳量子点所含的各类结构缺陷含量比例较为均衡使得其呈现激发波长依赖性荧光;合成温度低的碳量子所含结构缺陷总量不高且主要以某种形式(如C=O)存在,是其拥有激发独立发光行为的主要原因。同时由于合成温度高的碳量子点所含的含氮基团的增加,使得碳量子点拥有更强的荧光发射。进一步考察还发现其具有非常优良的稳定性,因此可以预期有很好的应用前景。
  • FIG. 679.  FIG. 679.

    FIG. 679.. 

    Figure  1.  The schematic diagram of the research route of this paper

    Figure  2.  (a,b) TEM images, insert: HRTEM images of CDs-160 and CDs-200. The particle size distributions of (c) CDs-160 and (d) CDs-200.

    Figure  3.  (a) FT-IR spectra, (b) XPS survey spectra and C1s spectra of (c) CDs-160 and (d) CDs-200.

    Figure  4.  (a) UV–Vis absorption spectra of CDs-160 and CDs-200; (b) Optimal emission of PL spectra of CDs-160 and CDs-200; PL spectra at different excitation wavelengths of (c) CDs-160 and (d) CDs-200.

    Figure  5.  (a) Effect of time under UV irradiation of 365 nm, (b) effect of time at room temperature, (c) effect of ionic strength (ionic strength were controlled by various concentrations of NaCl aqueous solution) and (d) effect of pH (the pH was adjusted with hydrochloric acid and sodium hydroxide) on fluorescence intensity of CDs-200.

  • [1] Sun Y P, Zhou B, Lin Y, et al. Quantum-sized carbon dots for bright and colorful photoluminescence[J]. Journal of the American Chemical Society,2006,128(24):7756-7757. doi: 10.1021/ja062677d
    [2] Molaei M J. Carbon quantum dots and their biomedical and therapeutic applications: a review[J]. RSC Advances,2019,9(12):6460-6481. doi: 10.1039/C8RA08088G
    [3] Li H T, He X D, Kang Z H, et al. Water-soluble fluorescent carbon quantum dots and photocatalyst design[J]. Angewandte Chemie International Edition,2010,49(26):4430-4434. doi: 10.1002/anie.200906154
    [4] Wang H, Sun P F, Cong S, et al. Nitrogen-doped carbon dots for “green” quantum dot solar cells[J]. Nanoscale Research Letters,2016,11(1):27-33. doi: 10.1186/s11671-016-1231-1
    [5] Fang L Y, Zhang L, Chen Z Z, et al. Ammonium citrate derived carbon quantum dot as onoff-on fluorescent sensor for detection of chromium(VI) and sulfites[J]. Materials Letters,2017,191(15):1-4.
    [6] Han G M, Zhao J, Zhang R L, et al. Membrane penetrating carbon quantum dots for imaging nucleic acid structures in live organisms[J]. Angew Chenu Int Ed,2019,58(21):7087-7091. doi: 10.1002/anie.201903005
    [7] Athika M, Prasath A, Duraisamy E, et al. Carbon quantum dots derived from denatured milk for efficient chromium-ion sensing and supercapacit or applications[J]. Materials Letters,2019,241(1):156-159.
    [8] Bourlinos A B, Stassinopoulos A, Anglos D, et al. Surface functionalized carbogenic quantum dots[J]. Small,2008,4(4):455-458. doi: 10.1002/smll.200700578
    [9] Li X M, Zhang S L, Kulinich S A, et al. Engineering surface states of carbon dots to achieve controllable luminescence for solid-luminescent composites and sensitive Be2+ detection[J]. Scientific Reports,2014,4(5):1-8.
    [10] Ding H, Yu S B, Wei J S, et al. Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism[J]. ACS nano,2016,10(1):484-491. doi: 10.1021/acsnano.5b05406
    [11] Zhao Q L, Zhang Z L, Huang B H, et al. Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite[J]. Chemical Communications,2008,7(41):5116-5118.
    [12] Baker S N, Baker G A. Luminescent carbon nanodots: Emergent nanolights[J]. Angewandte Chemie International Edition,2010,49(38):6726-6744. doi: 10.1002/anie.200906623
    [13] Krysmann M J, Kelarakis A, Dallas P, et al. Formation mechanism of carbogenic nanoparticles with dual photoluminescence emission[J]. Journal of the American Chemical Society,2012,134(2):747-750. doi: 10.1021/ja204661r
    [14] Nie H, Li M J, Li Q S, et al. Carbon dots with continuously tunable full-color emission and their application in ratiometric pH sensing[J]. Chemistry of Materials,2014,26(10):3104-3112. doi: 10.1021/cm5003669
    [15] Fang L Y, Xu Q, Zheng X, et al. Soy flour-derived carbon dots: facile preparation, fluorescence enhancement, and sensitive Fe3+ detection[J]. Journal of Nanoparticle Research,2016,18(8):1-13.
  • 加载中
图(6)
计量
  • 文章访问数:  657
  • HTML全文浏览量:  339
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-05
  • 修回日期:  2020-07-12
  • 网络出版日期:  2021-04-28
  • 刊出日期:  2021-06-01

目录

    /

    返回文章
    返回