留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Synthesis of size-controlled carbon microspheres from resorcinol/formaldehyde for high electrochemical performance

DU Xu YANG Hui-min ZHANG Yan-lan HU Qing-cheng LI Song-bo HE Wen-xiu

杜旭, 杨慧敏, 张研兰, 胡庆成, 李松波, 赫文秀. 间苯二酚/甲醛树脂基高电化学性能炭微球的尺寸控制合成. 新型炭材料, 2021, 36(3): 616-624. doi: 10.1016/S1872-5805(21)60033-1
引用本文: 杜旭, 杨慧敏, 张研兰, 胡庆成, 李松波, 赫文秀. 间苯二酚/甲醛树脂基高电化学性能炭微球的尺寸控制合成. 新型炭材料, 2021, 36(3): 616-624. doi: 10.1016/S1872-5805(21)60033-1
DU Xu, YANG Hui-min, ZHANG Yan-lan, HU Qing-cheng, LI Song-bo, HE Wen-xiu. Synthesis of size-controlled carbon microspheres from resorcinol/formaldehyde for high electrochemical performance. New Carbon Mater., 2021, 36(3): 616-624. doi: 10.1016/S1872-5805(21)60033-1
Citation: DU Xu, YANG Hui-min, ZHANG Yan-lan, HU Qing-cheng, LI Song-bo, HE Wen-xiu. Synthesis of size-controlled carbon microspheres from resorcinol/formaldehyde for high electrochemical performance. New Carbon Mater., 2021, 36(3): 616-624. doi: 10.1016/S1872-5805(21)60033-1

间苯二酚/甲醛树脂基高电化学性能炭微球的尺寸控制合成

doi: 10.1016/S1872-5805(21)60033-1
基金项目: 国家自然科学基金项目(No. 21902080,41763007)
详细信息
    通讯作者:

    杨慧敏,讲师. E-mail:emma920@imust.edu.cn

  • 中图分类号: 064

Synthesis of size-controlled carbon microspheres from resorcinol/formaldehyde for high electrochemical performance

Funds: This work was supported by National Natural Science Foundation of China (21902080, 41763007)
More Information
  • 摘要: 纳米结构酚醛树脂基炭气凝胶具有丰富的网络结构,是理想的超级电容器电极材料。然而,目前已合成出的大多数炭气凝胶为块状材料且其容量较低,制约着其实际应用。本文采用水热法成功地合成出酚醛树脂基多孔炭微球。通过SEM、BET、XPS等多种表征手段,发现铵基数目、烷基链长度和水热温度对炭球的孔结构、尺寸和均匀性有重要的影响。另外,研究还发现前驱体聚合过程中NH4+是形成炭球的必要条件,改变参数对多孔炭球的晶体结构无明显影响。将所制备的炭微球作电极材料,在电流密度为1.0 A g−1时,样品CN-80的性能最好,其最高比电容为233.8 F g−1。结果表明,炭材料大的比表面积、孔隙率和缺陷可能是提高电极电容的关键因素。同时,CN-80在7 A g−1下10000次充放电循环后,其电容保持率为98%,表明其具有良好的循环稳定性。
  • FIG. 678.  FIG. 678.

    FIG. 678.. 

    Figure  1.  SEM images of (a, d) CN-80, (b, e) CE-80 and (c, f) CD-80 at different magnifications.

    Figure  2.  SEM images of the (a) CN-70, (b) CN-80 and (c) CN-90.

    Figure  3.  (a) Nitrogen adsorption-desorption isotherms of the samples, (b) their pore size distribution curves and (c) the inset is the enlarged image of pore size distribution curves.

    Figure  4.  (a) TG curves, (b) XRD patterns and (c) Raman patterns of the CN-80, CE-80 and CD-80.

    Figure  5.  (a) XPS spectra of CN-80, CE-80 and CD-80 and (b-d) the corresponding high resolution O 1s peaks.

    Figure  6.  (a) Comparison of CV curves of CN-80, CE-80 and CD-80 at 100 mV s−1; (b) Comparison of GCD curves of CN-80, CE-80 and CD-80 at 1 A g−1; (c) CN-80 at different scan rates; (d) CN-80 at different current densities; (e) Specific capacitances of CN-80, CE-80 and CD-80 at various current densities; (f) Cycling performance of CN-80 at a current density of 7 A g−1.

    Figure  7.  EIS of CN-80, CE-80 and CD-80.

  • [1] Guerrero M A, Romero E, Barrero F, et al. Supercapacitors: Alternative energy storage systems[J]. Przeglad Elektrotechniczny,2009,85:188-195.
    [2] Akram U, Nadarajah M, Shah R, et al. A review on rapid responsive energy storage technologies for frequency regulation in modern power systems[J]. Renewable & Sustainable Energy Reviews,2020,120:1-10.
    [3] Choudhary N, Li C, Moore J, et al. Asymmetric supercapacitor electrodes and devices[J]. Advanced Materials,2017,29:1-30.
    [4] Zhai Y, Dou Y, Zhao D, et al. Carbon materials for chemical capacitive energy storage[J]. Advanced Materials,2011,23:4828-4850. doi: 10.1002/adma.201100984
    [5] Dubey R, Guruviah V. Review of carbon-based electrode materials for supercapacitor energy storage[J]. Ionics,2019,25:1419-1445. doi: 10.1007/s11581-019-02874-0
    [6] Iro Z S, Subramani C, Dash S S. A brief review on electrode materials for supercapacitor[J]. International Journal of Electrochemical Science,2016,11:10628-10643.
    [7] Kesavan T, Partheeban T, Vivekanantha M, et al. Hierarchical nanoporous activated carbon as potential electrode materials for high performance electrochemical supercapacitor[J]. Microporous and Mesoporous Materials,2019,274:236-244. doi: 10.1016/j.micromeso.2018.08.006
    [8] Wang B, Ruan T, Chen Y, et al. Graphene-based composites for electrochemical energy storage[J]. Energy Storage Materials,2020,24:22-51. doi: 10.1016/j.ensm.2019.08.004
    [9] Li F, Xie L J, Sun G H, et al. Resorcinol-formaldehyde based carbon aerogel: Preparation, structure and applications in energy storage devices[J]. Microporous and Mesoporous Materials,2019,279:293-315. doi: 10.1016/j.micromeso.2018.12.007
    [10] Zhou X L, Zhang H, Shao L M, et al. Preparation and application of hierarchical porous carbon materials from waste and biomass: A review[J]. Waste and Biomass Valorization,2020,186:1-26.
    [11] Chen A, Wang Y, Yu Y, et al. Nitrogen-doped hollow carbon spheres for supercapacitors[J]. Journal of Materials Science,2017,52:3153-3161. doi: 10.1007/s10853-016-0604-2
    [12] Li L, Lian Z T, Meng X, et al. Porous carbon spheres derived from waste ion-exchange resins and research on adsorption of methylene blue[J]. Journal of Environmental Engineering,2020,146:1-10.
    [13] Liu H, Zhao D, Gong G, et al. Effect of Temperature on morphology and supercapacitor performance of carbon nano-spheres[J]. Chemical Journal of Chinese Universities-Chinese,2019,40:18-23.
    [14] Chen S, Xing W, Duan J, et al. Nanostructured morphology control for efficient supercapacitor electrodes[J]. Journal of Materials Chemistry A,2013,1:2941-2954. doi: 10.1039/C2TA00627H
    [15] Wang P, Zhang H, Wang H, et al. Hybrid manufacturing of 3D hierarchical porous carbons for electrochemical storage[J]. Advanced Materials Technologies,2020,5:1-11.
    [16] Jayaramulu K, Dubal D P, Nagar B, et al. Ultrathin hierarchical porous carbon nanosheets for high-performance supercapacitors and redox electrolyte energy storage[J]. Advanced Materials,2018,30:1-9.
    [17] Li H, Guo H, Tong S, et al. High-performance supercapacitor carbon electrode fabricated by large-scale roll-to-roll micro-gravure printing[J]. Journal of Physics D-Applied Physics,2019,52:115501-115511. doi: 10.1088/1361-6463/aafbf3
    [18] Sun W, Zhang Y, Yang Z, et al. High-performance activated carbons for electrochemical double layer capacitors: Effects of morphology and porous structures[J]. International Journal of Energy Research,2020,44:1930-1950. doi: 10.1002/er.5047
    [19] Du J, Zong S, Zhang Y, et al. Co-assembly strategy for uniform and tunable hollow carbon spheres with supercapacitor application[J]. Journal of Colloid and Interface Science,2020,565:245-253. doi: 10.1016/j.jcis.2020.01.021
    [20] Du J, Chen A, Liu L, et al. N-doped hollow mesoporous carbon spheres prepared by polybenzoxazines precursor for energy storage[J]. Carbon,2020,160:265-272. doi: 10.1016/j.carbon.2020.01.018
    [21] Du J, Liu L, Zhang Y, et al. Rich porous dual-shell carbon spheres by dissolution-reassembly with high performance in supercapacitor[J]. Journal of Energy Storage,2020,29:101375-101382. doi: 10.1016/j.est.2020.101375
    [22] Zhang C, Wang Y, Wu X. Progress on application of biomass-based porous carbon in supercapacitors[J]. Modern Chemical Industry,2020,40:27-29, 35.
    [23] Wu J, Xia M, Zhang X, et al. Hierarchical porous carbon derived from wood tar using crab as the template: Performance on supercapacitor[J]. Journal of Power Sources,2020,455:227982-227991. doi: 10.1016/j.jpowsour.2020.227982
    [24] Jiang C, Yakaboylu G A, Yumak T, et al. Activated carbons prepared by indirect and direct CO2 activation of lignocellulosic biomass for supercapacitor electrodes[J]. Renewable Energy,2020,155:38-52. doi: 10.1016/j.renene.2020.03.111
    [25] Ma C, Chen X, Long D, et al. High-surface-area and high-nitrogen-content carbon microspheres prepared by a pre-oxidation and mild KOH activation for superior supercapacitor[J]. Carbon,2017,118:699-708. doi: 10.1016/j.carbon.2017.03.075
    [26] Guo J, Wu D, Wang T, et al. P-doped hierarchical porous carbon aerogels derived from phenolic resins for high performance supercapacitor[J]. Applied Surface Science,2019,475:56-66. doi: 10.1016/j.apsusc.2018.12.095
    [27] Zhu D, Wang Y, Lu W, et al. A novel synthesis of hierarchical porous carbons from interpenetrating polymer networks for high performance supercapacitor electrodes[J]. Carbon,2017,111:667-674. doi: 10.1016/j.carbon.2016.10.016
    [28] Wang Y, Chang B, Guan D, et al. Mesoporous activated carbon spheres derived from resorcinol-formaldehyde resin with high performance for supercapacitors[J]. Journal of Solid State Electrochemistry,2015,19:1783-1791. doi: 10.1007/s10008-015-2789-8
    [29] Lee J H, Park S J. Recent advances in preparations and applications of carbon aerogels: A review[J]. Carbon,2020,163:1-18. doi: 10.1016/j.carbon.2020.02.073
    [30] Yan T, Wan Z, Wang K, et al. A 3D carbon foam derived from phenol resin via CsCl soft-templating approach for high-performance supercapacitor[J]. Energy Technology,2020,8:1301-1308.
    [31] Liu M, Zhao F, Zhu D, et al. Ultramicroporous carbon nanoparticles derived from metal-organic framework nanoparticles for high-performance supercapacitors[J]. Materials Chemistry and Physics,2018,211:234-241. doi: 10.1016/j.matchemphys.2018.02.030
    [32] Chen M, Xuan H, Zheng X, et al. N-doped mesoporous carbon by a hard-template strategy associated with chemical activation and its enhanced supercapacitance performance[J]. Electrochimica Acta,2017,238:269-277. doi: 10.1016/j.electacta.2017.04.034
    [33] Ariga K, Nishikawa M, Mori T, et al. Self-assembly as a key player for materials nanoarchitectonics[J]. Science and Technology of Advanced Materials,2019,20:51-95. doi: 10.1080/14686996.2018.1553108
    [34] Wu W, Yi Y, Wang T, et al. Coordination-self-assembly approach toward aggregation-free metal nanoparticles in ordered mesoporous carbons[J]. Chemelectrochem,2019,6:724-730. doi: 10.1002/celc.201801452
    [35] Rey Raap N, Enterria M, Martins J I, et al. Influence of multiwalled carbon nanotubes as additives in biomass-derived carbons for supercapacitor applications[J]. Acs Applied Materials & Interfaces,2019,11:6066-6077.
    [36] Zhang P, Liu M, Liu S. N-doped honeycomb-like hierarchical porous carbon foams for supercapacitor applications with different PC/RF mass ratios[J]. Journal of Materials Science-Materials in Electronics,2020,31:3519-3528. doi: 10.1007/s10854-020-02900-2
    [37] Qi X, Lin T, Zhang S, et al. Nitrogen doped hierarchical porous hard carbon derived from a facial Ti-peroxy-initiating in-situ polymerization and its application in electrochemical capacitors[J]. Microporous and Mesoporous Materials,2020,294:1-7.
    [38] Yang B, Zhang D, He J, et al. Simple and green fabrication of a biomass-derived N and O self-doped hierarchical porous carbon via a self-activation route for supercapacitor application[J]. Carbon Letters,2020,23:1-11.
    [39] Lombardo A G, Simon B A, Taiwo O, et al. A pore network model of porous electrodes in electrochemical devices[J]. Journal of Energy Storage,2019,24:1-17.
    [40] Platek A, Piwek J, Fic K, et al. Ageing mechanisms in electrochemical capacitors with aqueous redox-active electrolytes[J]. Electrochimica Acta,2019,311:211-220. doi: 10.1016/j.electacta.2019.04.117
    [41] Neal J N, Wesolowski D J, Henderson D, et al. Electric double layer capacitance for ionic liquids in nanoporous electrodes: Effects of pore size and ion composition[J]. Journal of Molecular Liquids,2018,270:145-150. doi: 10.1016/j.molliq.2017.10.128
    [42] Liu J, Qiao S Z, Liu H, et al. Extension of the Stober method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres[J]. Angewandte Chemie International edtion. in English,2011,50:5947-5951. doi: 10.1002/anie.201102011
    [43] Job N, Thery A, Pirard R, et al. Carbon aerogels, cryogels and xerogels: Influence of the drying method on the textural properties of porous carbon materials[J]. Carbon,2005,43:2481-2494. doi: 10.1016/j.carbon.2005.04.031
    [44] Garrido R, Silvestre J D, Flores-Colen I, et al. Economic assessment of the production of subcritically dried silica-based aerogels[J]. Journal of Non-Crystalline Solids,2019,516:26-34. doi: 10.1016/j.jnoncrysol.2019.04.016
  • 20200160-SI.pdf
  • 加载中
图(8)
计量
  • 文章访问数:  840
  • HTML全文浏览量:  346
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-04
  • 修回日期:  2020-10-23
  • 网络出版日期:  2021-04-02
  • 刊出日期:  2021-06-01

目录

    /

    返回文章
    返回