留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Boron and nitrogen co-doped carbon dots for boosting electrocatalytic oxygen reduction

LIU Hui LIU Zi-hui ZHANG Jin-qiang ZHI Lin-jie WU Ming-bo

刘卉, 刘子慧, 张金强, 智林杰, 吴明铂. 硼氮双掺杂提升碳点电催化氧还原活性研究. 新型炭材料, 2021, 36(3): 585-593. doi: 10.1016/S1872-5805(21)60043-4
引用本文: 刘卉, 刘子慧, 张金强, 智林杰, 吴明铂. 硼氮双掺杂提升碳点电催化氧还原活性研究. 新型炭材料, 2021, 36(3): 585-593. doi: 10.1016/S1872-5805(21)60043-4
LIU Hui, LIU Zi-hui, ZHANG Jin-qiang, ZHI Lin-jie, WU Ming-bo. Boron and nitrogen co-doped carbon dots for boosting electrocatalytic oxygen reduction. New Carbon Mater., 2021, 36(3): 585-593. doi: 10.1016/S1872-5805(21)60043-4
Citation: LIU Hui, LIU Zi-hui, ZHANG Jin-qiang, ZHI Lin-jie, WU Ming-bo. Boron and nitrogen co-doped carbon dots for boosting electrocatalytic oxygen reduction. New Carbon Mater., 2021, 36(3): 585-593. doi: 10.1016/S1872-5805(21)60043-4

硼氮双掺杂提升碳点电催化氧还原活性研究

doi: 10.1016/S1872-5805(21)60043-4
基金项目: 国家自然科学基金(52072409,U1662113,U20A20131);山东省泰山学者人才工程项目(ts201712020)
详细信息
    通讯作者:

    吴明铂,教授. E-mail:wumb@upc.edu.cn

  • 中图分类号: TB33

Boron and nitrogen co-doped carbon dots for boosting electrocatalytic oxygen reduction

More Information
  • 摘要: 碳点(CDs)因其较大的比表面积和较快的电子转移特性,已成为能量转换应用领域一种新兴的纳米炭材料。本文以低成本的石油焦为原料,通过简便的一步电化学刻蚀方法制备了硼氮双掺杂碳点(BN-CDs)。与单掺杂碳点B-CDs和N-CDs相比,双掺杂BN-CDs表现出更优异的四电子氧还原电催化活性,具有更正的起始电位(Eonset=0.958 V)和大的扩散极限电流密度(jD=−4.32 mA cm−2),且长期稳定性和甲醇耐受性优于商用Pt/C催化剂。密度泛函理论计算(DFT)研究表明,B、N双掺杂的协同效应促进了O2分子的吸附,有助于提高碳点的电催化活性。本研究为纳米炭材料的设计及其在能量转换领域的应用提供了新的思路。
  • FIG. 675.  FIG. 675.

    FIG. 675.. 

    Figure  1.  Schematic illustration of the synthetic process of BN-CDs from petroleum coke by an electrochemical etching method.

    Figure  2.  (a) SEM images and (b) XRD pattern of petroleum coke precursor.

    Figure  3.  TEM, HRTEM images and corresponding size distribution of (a) BN-CDs, (b) B-CDs and (c) N-CDs. (d) FTIR spectra, (e) Raman spectra and (f) XPS survey spectra of BN-CDs, B-CDs and N-CDs. The high-resolution C 1s XPS spectra of (g) BN-CDs, (h) B-CDs and (i) N-CDs.

    Figure  4.  High-resolution B 1s spectra of (a1) BN-CDs and (a2) B-CDs. High-resolution N 1s spectra of (b1) BN-CDs and (b2) N-CDs.

    Figure  5.  Schematic diagram for the preparation of BN-CDs from petroleum coke.

    Figure  6.  (a) CV curves of the BN-CDs, B-CDs and N-CDs in N2 (dotted lines) and O2 saturated (solid lines) environment. (b) RDE LSV curves of BN-CDs, B-CDs, N-CDs and Pt/C at the electrode rotation rate of 1600 r/min. (c) The onset potential and diffusion-limiting current density at 0.3 V of as-prepared samples. (d) RDE LSV curves and the corresponding K-L plots for the BN-CDs. (e) Chronoamperometric responses of BN-CDs and Pt/C catalysts in O2-saturated 0.1 mol L−1 of KOH solution with addition of methanol at 300 s. (f) Chronoamperometric responses of BN-CDs and Pt/C catalysts in O2-saturated 0.1 mol L−1 of KOH solution for 10 h.

    Figure  7.  Optimized adsorption sites of O2 molecule on (a) BN-CDs (BN-1, BN-2, BN-3, BN-4 and BN-5 structures), (b) B-CDs (BC3 structure) and (c) N-CDs (pyridine N structure) models and their corresponding Eads values. The gray, blue, green, red and white colors represent carbon, nitrogen, boron, oxygen and hydrogen atom, respectively.

    Table  1.   The elements contents (wt.%) from elemental analysis of petroleum coke precursor.

    ElementsContents (wt.%)
    C95.66
    H3.40
    N0.46
    S0.16
    O*0.32
    *calculated by the subtraction method
    下载: 导出CSV

    Table  2.   The atomic percent (at.%) from XPS in BN-CDs, B-CDs and N-CDs.

    SamplesCONB
    BN-CDs58.531.95.14.5
    B-CDs62.432.9-4.7
    N-CDs67.227.25.6-
    下载: 导出CSV

    Table  3.   The surface N contents (at.%) of BN-CDs and N-CDs.

    SamplesN-BPyridinic NPyrrolic NGraphitic NOxidized N
    BN-CDs10.435.432.214.87.2
    N-CDs-31.340.721.46.6
    下载: 导出CSV

    Table  4.   The surface B contents (at.%) of BN-CDs and B-CDs.

    SamplesB-NBC3BC2OBCO2
    BN-CDs9.229.342.418.1
    B-CDs-27.847.524.7
    下载: 导出CSV
  • [1] Yang L, Shui J, Du L, et al. Carbon-based metal-free ORR electrocatalysts for fuel cells: past, present, and future[J]. Advanced Materials,2019,31(13):1804799. doi: 10.1002/adma.201804799
    [2] Sealy C. The problem with platinum[J]. Materials Today,2008,11(12):65-68. doi: 10.1016/S1369-7021(08)70254-2
    [3] Yan R, Wang K, Wang C W, et al. A review of graphene-based catalysts for oxygen reduction reaction[J]. New Carbon Materials,2020,35(5):508-521.
    [4] Jorge A B, Jervis R, Periasamy A P, et al. 3D carbon materials for efficient oxygen and hydrogen electrocatalysis[J]. Advanced Energy Materials,2020,10(11):1902494. doi: 10.1002/aenm.201902494
    [5] Dai L, Xue Y, Qu L, et al. Metal-free catalysts for oxygen reduction reaction[J]. Chemical Reviews,2015,115(11):4823-4892. doi: 10.1021/cr5003563
    [6] Su D S, Zhang J, Frank B, et al. Metal-free heterogeneous catalysis for sustainable chemistry[J]. ChemSusChem,2010,3(2):169-180. doi: 10.1002/cssc.200900180
    [7] Ye X, Hu L, Liu M, et al. Improved oxygen reduction performance of a N, S co-doped graphene-like carbon prepared by a simple carbon bath method[J]. New Carbon Materials,2020,35(5):531-539. doi: 10.1016/S1872-5805(20)60506-6
    [8] Zhao Y, Yang L, Chen S, et al. Can boron and nitrogen co-doping improve oxygen reduction reaction activity on carbon nanotubes?[J]. Journal of the American Chemical Society,2013,135(4):1201-1204. doi: 10.1021/ja310566z
    [9] Cai T, Liu B, Pang E, et al. A review on the preparation and applications of coal-based fluorescent carbon dots[J]. New Carbon Materials,2020,35(6):646-666. doi: 10.1016/S1872-5805(20)60520-0
    [10] Tian L, Li Z, Wang P, et al. Carbon quantum dots for advanced electrocatalysis[J]. Journal of Energy Chemistry,2020,55(1):279-294.
    [11] Hu C, Li M, Qiu J, et al. Design and fabrication of carbon dots for energy conversion and storage[J]. Chemical Society Reviews,2019,48(8):2315-2337. doi: 10.1039/C8CS00750K
    [12] Zhang Y, Li K, Ren S, et al. Coal-derived graphene quantum dots produced by ultrasonic physical tailoring and their capacity for Cu (II) detection[J]. ACS Sustainable Chemistry & Engineering,2019,7(11):9793-9799.
    [13] Hu C, Yu C, Li M, et al. Nitrogen-doped carbon dots decorated on graphene: a novel all-carbon hybrid electrocatalyst for enhanced oxygen reduction reaction[J]. Chemical Communications,2015,51(16):3419-3422. doi: 10.1039/C4CC08735F
    [14] Yan Y, Gong J, Chen J, et al. Recent advances on graphene quantum dots: from chemistry and physics to applications[J]. Advanced Materials,2019,31(21):1808283. doi: 10.1002/adma.201808283
    [15] Dinh K N, Gomes V G. Iodine doped composite with biomass carbon dots and reduced graphene oxide: A versatile bifunctional electrode for energy storage and oxygen reduction reaction[J]. Journal of Materials Chemistry A,2019,7(39):22650-22662. doi: 10.1039/C9TA05559B
    [16] Rao Y, Ning H, Ma X, et al. Template-free synthesis of coral-like nitrogen-doped carbon dots/Ni3S2/Ni foam composites as highly efficient electrodes for water splitting[J]. Carbon,2018,129:335-341. doi: 10.1016/j.carbon.2017.12.040
    [17] Grimme S, Antony J, Ehrlich S, et al. A consistent and accurate ab initio parametrization on density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. The Journal of Chemical Physics,2010,132(15):154104. doi: 10.1063/1.3382344
    [18] Baker S N, Baker G A. Luminescent carbon nanodots: emergent nanolights[J]. Angewandte Chemie International Edition,2010,49(38):6726-6744. doi: 10.1002/anie.200906623
    [19] Li H, Kang Z, Liu Y, et al. Carbon nanodots: synthesis, properties and applications[J]. Journal of Materials Chemistry,2012,22(46):24230-24253. doi: 10.1039/c2jm34690g
    [20] Ozaki J, Kimura N, Anahara T, et al. Preparation and oxygen reduction activity of BN-doped carbons[J]. Carbon,2007,45(9):1847-1853. doi: 10.1016/j.carbon.2007.04.031
    [21] Li Q, Zhang S, Dai L, et al. Nitrogen-doped colloidal graphene quantum dots and their size-dependent electrocatalytic activity for the oxygen reduction reaction[J]. Journal of the American Chemical Society,2012,134(46):18932-18935. doi: 10.1021/ja309270h
    [22] Hu C, Yu C, Li M, et al. Chemically tailoring coal to fluorescent carbon dots with tuned size and their capacity for Cu (II) detection[J]. Small,2014,10(23):4926-4933. doi: 10.1002/smll.201401328
    [23] Liu R, Huang H, Li H, et al. Metal nanoparticle/carbon quantum dot composite as a photocatalyst for high-efficiency cyclohexane oxidation[J]. ACS Catalysis,2013,4(1):328-336.
    [24] Liu H, Zhao Q, Liu J, et al. Synergistically enhanced activity of nitrogen-doped carbon dots/graphene composites for oxygen reduction reaction[J]. Applied Surface Science,2017,423:909-916. doi: 10.1016/j.apsusc.2017.06.225
    [25] Han Y, Tang D, Yang Y, et al. Non-metal single/dual doped carbon quantum dots: A general flame synthetic method and electro-catalytic properties[J]. Nanoscale,2015,7(14):5955-5962. doi: 10.1039/C4NR07116F
    [26] Zhang Y, Zhang K, Jia K, et al. Preparation of coal-based graphene quantum dots/α-Fe2O3 nanocomposites and their lithium-ion storage properties[J]. Fuel,2019,241:646-652. doi: 10.1016/j.fuel.2018.12.030
    [27] Kim Y A, Fujisawa K, Muramatsu H, et al. Raman spectroscopy of boron-doped single-layer graphene[J]. ACS Nano,2012,6(7):6293-6300. doi: 10.1021/nn301728j
    [28] Lu J, Yang J, Wang J, et al. One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids[J]. ACS Nano,2009,3(8):2367-2375. doi: 10.1021/nn900546b
    [29] Bao L, Zhang Z L, Tian Z Q, et al. Electrochemical tuning of luminescent carbon nanodots: from preparation to luminescence mechanism[J]. Advanced Materials,2011,23(48):5801-5806. doi: 10.1002/adma.201102866
    [30] He M, Guo X, Huang J, et al. Mass production of tunable multicolor graphene quantum dots from an energy resource of coke by a one-step electrochemical exfoliation[J]. Carbon,2018,140:508-520. doi: 10.1016/j.carbon.2018.08.067
    [31] Van Tam T, Kang S G, Babu K F, et al. Synthesis of B-doped graphene quantum dots as a metal-free electrocatalyst for the oxygen reduction reaction[J]. Journal of Materials Chemistry A,2017,5(21):10537-10543. doi: 10.1039/C7TA01485F
    [32] Zheng Y, Jiao Y, Ge L, et al. Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis[J]. Angewandte Chemie International Edition,2013,125(11):3192-3198.
    [33] Li Z, Wei L, Jiang W J, et al. Chemical state of surrounding iron species affects the activity of Fe-Nx for electrocatalytic oxygen reduction[J]. Applied Catalysis B: Environmental,2019,251:240-246. doi: 10.1016/j.apcatb.2019.03.046
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  885
  • HTML全文浏览量:  375
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-06
  • 修回日期:  2021-05-14
  • 网络出版日期:  2021-05-31
  • 刊出日期:  2021-06-01

目录

    /

    返回文章
    返回