留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Micro/mesopore carbon spheres derived from sucrose for use in high performance supercapacitors

SHI Jing TIAN Xiao-dong LI Xiao LIU Ye-qun SUN Hai-zhen

师晶, 田晓冬, 李肖, 刘叶群, 孙海珍. 蔗糖溶液制备微/介孔炭球及其电容性能. 新型炭材料, 2021, 36(6): 1149-1157. doi: 10.1016/S1872-5805(21)60044-6
引用本文: 师晶, 田晓冬, 李肖, 刘叶群, 孙海珍. 蔗糖溶液制备微/介孔炭球及其电容性能. 新型炭材料, 2021, 36(6): 1149-1157. doi: 10.1016/S1872-5805(21)60044-6
SHI Jing, TIAN Xiao-dong, LI Xiao, LIU Ye-qun, SUN Hai-zhen. Micro/mesopore carbon spheres derived from sucrose for use in high performance supercapacitors. New Carbon Mater., 2021, 36(6): 1149-1157. doi: 10.1016/S1872-5805(21)60044-6
Citation: SHI Jing, TIAN Xiao-dong, LI Xiao, LIU Ye-qun, SUN Hai-zhen. Micro/mesopore carbon spheres derived from sucrose for use in high performance supercapacitors. New Carbon Mater., 2021, 36(6): 1149-1157. doi: 10.1016/S1872-5805(21)60044-6

蔗糖溶液制备微/介孔炭球及其电容性能

doi: 10.1016/S1872-5805(21)60044-6
基金项目: 国家自然科学基金(51602322,21878321);山西省自然科学基金(201801D221371);山西省优秀博士项目(SQ2019001)
详细信息
    通讯作者:

    田晓冬,博士. E-mail:tianxiaodong@sxicc.ac.cn

  • 中图分类号: TQ127.1+1

Micro/mesopore carbon spheres derived from sucrose for use in high performance supercapacitors

More Information
  • 摘要: 以蔗糖溶液为炭前驱体,通过简单的水热炭化和KOH/NaOH碱活化方法制备微/介孔炭球。研究了KOH和NaOH活化参数对炭球比表面积和相应孔径分布的影响。炭球作为超级电容器电极,在6 mol L−1 KOH电解液中具有高的比电容和良好的倍率性能。此外,在1 mol L−1 MeEt3NBF4/PC有机电解液中,微/介孔炭球电极组成的对称电容器表现出高达30.4 Wh kg−1的能量密度和18.5 kW kg−1的功率密度。在5 A g−1的电流密度下,充放电循环15 000次后比容量保持率为73.0%。
  • FIG. 1082.  FIG. 1082.

    FIG. 1082.. 

    Figure  1.  SEM images of the samples using HTC∶KOH∶NaOH in mass ratios of (a) 1∶0∶0 (HTC), (b) 1∶3∶0 (ATCK), (c) 1∶0∶3 (ATCNa), (d) 1∶1∶2 (ATCK/Na).

    Figure  2.  (a) XRD patterns and (b) Raman spectra of ATCK, ATCNa and ATCK/Na.

    Figure  3.  (a) N2 adsorption isotherms and (b) PSDs of ATCK, ATCNa and ATCK/Na.

    Figure  4.  X-ray photoelectron survey scanning spectra of (a) all samples, the deconvoluted O 1s peaks for (b) ATCK, (c) ATCNa and (d) ATCK/Na, respectively.

    Figure  5.  The electrochemical performances of ATCK, ATCNa and ATCK/Na. (a) CV curves at 5 mV s−1, GCD plots at (b) 0.1 A g−1 and (c) 20 A g−1, (d) the IR drop, (e) specific capacitance as a function of current density and (f) Nyquist plots.

    Figure  6.  The electrochemical performance of ATCK/Na electrode in organic electrolyte. (a) CV curves at various scan rates, (b) GCD plots and (c) Cs, Ccell at different current densities, (d) Ragone plot and (e) cycling performance at 5 A g-1.

    Table  1.   Results of sorption tests and elemental compositions of activated carbons.

    Sample SBET (m2 g−1) Smicro (m2 g−1) V(2.0−3.7 nm) (cm3 g−1) Pav (nm) Elemental composition by XPS
    C (at%) O (at%)
    ATCK 1643 1427 0 1.79 90.01 9.99
    ATCNa 834 518 0.06 1.95 94.32 5.68
    ATCK/Na 1160 957 0.03 1.82 92.74 7.26
    下载: 导出CSV
  • [1] Zhang X, Kong D, Li X, et al. Dimensionally designed carbon-silicon hybrids for lithium storage[J]. Adv Funct Mater,2019,29:1806061-1806084. doi: 10.1002/adfm.201806061
    [2] Tebyetekerwa M, Marriam I, Xu Z, et al. Critical insight: Challenges and requirements of fibre electrodes for wearable electrochemical energy storage[J]. Energy Environ Sci,2019,12:2148-2160. doi: 10.1039/C8EE02607F
    [3] Zhao D, Dai M, Liu H, et al. Sulfur-induced interface engineering of hybrid NiCo2O4@NiMo2S4 structure for overall water splitting and flexible hybrid energy storage[J]. Adv Mater Interfaces,2019,6:1901308-1901317. doi: 10.1002/admi.201901308
    [4] Luo X Y, Chen Y, Mo Y. A review of charge storage in porous carbon-based supercapacitors[J]. New Carbon Materials,2021,36(1):49-68. doi: 10.1016/S1872-5805(21)60004-5
    [5] Jin H, Li J, Yuan Y, et al. Recent progress in biomass-derived electrode materials for high volumetric performance supercapacitors[J]. Adv Energy Mater,2018,8:1801007-1801018. doi: 10.1002/aenm.201801007
    [6] Biswal M, Banerjee A, Deo M, et al. From dead leaves to high energy density supercapacitors[J]. Energy Environ Sci,2013,6:1249-1259. doi: 10.1039/c3ee22325f
    [7] Wei T, Wei X, Yang L, et al. A one-step moderate-explosion assisted carbonization strategy to sulfur and nitrogen dual-doped porous carbon nanosheets derived from camellia petals for energy storage[J]. J Power Sources,2016,331:373-381. doi: 10.1016/j.jpowsour.2016.09.053
    [8] Wang C, Wu D, Wang H, et al. A green and scalable route to yield porous carbon sheets from biomass for supercapacitors with high-capacity[J]. J Mater Chem A,2018,6:1244-1254. doi: 10.1039/C7TA07579K
    [9] Wang K, Zhao N, Lei S, et al. Promising biomass-based activated carbons derived from willow catkins for high performance supercapacitors[J]. Electrochim Acta,2015,166:1-11. doi: 10.1016/j.electacta.2015.03.048
    [10] Gao F, Qu J, Zhao Z, et al. Nitrogen-doped activated carbon derived from prawn shells for high-performance supercapacitors[J]. Electrochim Acta,2016,190:1134-1141. doi: 10.1016/j.electacta.2016.01.005
    [11] Chen M, Kang X, Wumaier T, et al. Preparation of activated carbon from cotton stalk and its application in supercapacitor[J]. J Solid State Electrochem,2013,17:1005-1012. doi: 10.1007/s10008-012-1946-6
    [12] Wu M, Ai P, Tan M, et al. Synthesis of starch-derived mesoporous carbon for electric double layer capacitor[J]. Chem Eng J,2014,245:166-172. doi: 10.1016/j.cej.2014.02.023
    [13] Hao Z Q, Cao J P, Wu Y, et al. Preparation of porous carbon sphere from waste sugar solution for electric double-layer capacitor[J]. J Power Sources,2017,361:249-258. doi: 10.1016/j.jpowsour.2017.06.086
    [14] Largeot C, Portet C, Chmiola J, et al. Relation between the ion size and pore size for an electric double-layer capacitor[J]. J Am Chem Soc,2008,130:2730-2731. doi: 10.1021/ja7106178
    [15] Chang C, Li M, Wang H, et al. A novel fabrication strategy for doped hierarchical porous biomass-derived carbon with high microporosity for ultrahigh-capacitance supercapacitors[J]. J Mater Chem A,2019,7:19939-19949. doi: 10.1039/C9TA06210F
    [16] He X, Li X, Ma H, et al. ZnO template strategy for the synthesis of 3D interconnected graphene nanocapsules from coal tar pitch as supercapacitor electrode materials[J]. J Power Sources,2017,340:183-191. doi: 10.1016/j.jpowsour.2016.11.073
    [17] He X, Ling P, Qiu J, et al. Efficient preparation of biomass-based mesoporous carbons for supercapacitors with both high energy density and high power density[J]. J Power Sources,2013,240:109-113. doi: 10.1016/j.jpowsour.2013.03.174
    [18] Tian X, Zhao N, Wang K, et al. Preparation and electrochemical characteristics of electrospun water-soluble resorcinol/phenol-formaldehyde resin-based carbon nanofibers[J]. RSC Adv,2015,5:40884-40891. doi: 10.1039/C5RA02984H
    [19] Zhai Y, Dou Y, Zhao D, et al. Carbon materials for chemical capacitive energy storage[J]. Adv Mater,2011,23:4828-4850. doi: 10.1002/adma.201100984
    [20] Yu X, Wang J G, Huang Z H, et al. Ordered mesoporous carbon nanospheres as electrode materials for high-performance supercapacitors[J]. Electrochem Commun,2013,36:66-70. doi: 10.1016/j.elecom.2013.09.010
    [21] Maciá-Agulló J A, Moore B C, Cazorla-Amorós D, et al. Activation of coal tar pitch carbon fibres: Physical activation vs. chemical activation[J]. Carbon,2004,42:1367-1370. doi: 10.1016/j.carbon.2004.01.013
    [22] Hou J, Jiang K, Wei R, et al. Popcorn-derived porous carbon flakes with an ultrahigh specific surface area for superior performance supercapacitors[J]. ACS Appl Mater Interfaces,2017,9:30626-30634. doi: 10.1021/acsami.7b07746
    [23] Yao Y, Zhang Y, Li L, et al. Fabrication of hierarchical porous carbon nanoflakes for high-performance supercapacitors[J]. ACS Appl Mater Interfaces,2017,9:34944-34953. doi: 10.1021/acsami.7b10593
    [24] Tian X, Li X, Yang T, et al. Flexible carbon nanofiber mats with improved graphitic structure as scaffolds for efficient all-solid-state supercapacitor[J]. Electrochim Acta,2017,247:1060-1071. doi: 10.1016/j.electacta.2017.07.103
    [25] Thommes M, Cychosz K A. Physical adsorption characterization of nanoporous materials: Progress and challenges[J]. Adsorption,2014,20:233-250. doi: 10.1007/s10450-014-9606-z
    [26] Jagiello J, Ania C, Parra J B, et al. Dual gas analysis of microporous carbons using 2D-NLDFT heterogeneous surface model and combined adsorption data of N2 and CO2[J]. Carbon,2015,91:330-337. doi: 10.1016/j.carbon.2015.05.004
    [27] Thommes M, Kaneko K, Neimark A V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure Appl Chem,2015,87:1051-1069. doi: 10.1515/pac-2014-1117
    [28] Lillo-Ródenas M A, Cazorla-Amorós D, Linares-Solano A. Understanding chemical reactions between carbons and NaOH and KOH: An insight into the chemical activation mechanism[J]. Carbon,2003,41:267-275.
    [29] Tian X, Zhao N, Song Y, et al. Synthesis of nitrogen-doped electrospun carbon nanofibers with superior performance as efficient supercapacitor electrodes in alkaline solution[J]. Electrochim Acta,2015,185:40-51. doi: 10.1016/j.electacta.2015.10.096
    [30] Li X, Tian X, Yang T, et al. Coal liquefaction residues based carbon nanofibers film prepared by electrospinning: An effective approach to coal waste management[J]. ACS Sustainable Chem Eng,2019,7:5742-5750. doi: 10.1021/acssuschemeng.8b05210
    [31] Ma C, Song Y, Shi J, et al. Preparation and one-step activation of microporous carbon nanofibers for use as supercapacitor electrodes[J]. Carbon,2013,51:290-300. doi: 10.1016/j.carbon.2012.08.056
    [32] Tang C, Liu Y, Yang D, et al. Oxygen and nitrogen co-doped porous carbons with finely-layered schistose structure for high-rate-performance supercapacitors[J]. Carbon,2017,122:538-546. doi: 10.1016/j.carbon.2017.07.007
    [33] Guo Q, Zhou X, Li X, et al. Supercapacitors based on hybrid carbon nanofibers containing multiwalled carbon nanotubes[J]. J Mater Chem,2009,19:2810-2816. doi: 10.1039/b820170f
    [34] Wang H, Gao Q, Hu J, et al. High performance of nanoporous carbon in cryogenic hydrogen storage and electrochemical capacitance[J]. Carbon,2009,47:2259-2268. doi: 10.1016/j.carbon.2009.04.021
    [35] Tan M H, Li P, Zheng J T, et al. Preparation and modification of high performance porous carbons from petroleum coke for use as supercapacitor electrodes[J]. New Carbon Mater,2016,31:343-351. doi: 10.1016/S1872-5805(16)60018-5
    [36] Chang C, Wang H, Zhang Y, et al. Fabrication of hierarchical porous carbon frameworks from metal-ion-assisted step-activation of biomass for supercapacitors with ultrahigh capacitance[J]. ACS Sustainable Chem Eng,2019,7:10763-10772. doi: 10.1021/acssuschemeng.9b01455
    [37] Du J, Liu L, Yu Y, et al. A confined space pyrolysis strategy for controlling the structure of hollow mesoporous carbon spheres with high supercapacitor performance[J]. Nanoscale,2019,11:4453-4462. doi: 10.1039/C8NR08784A
    [38] Sun Y, Wu Q, Xu Y, et al. Highly conductive and flexible mesoporous graphitic films prepared by graphitizing the composites of graphene oxide and nanodiamond[J]. J Mater Chem,2011,21:7154-7160. doi: 10.1039/c0jm04434b
    [39] Yang S Y, Chang K H, Tien H W, et al. Design and tailoring of a hierarchical graphene-carbon nanotube architecture for supercapacitors[J]. J Mater Chem,2011,21:2374-2380. doi: 10.1039/C0JM03199B
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  5838
  • HTML全文浏览量:  477
  • PDF下载量:  114
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-10
  • 修回日期:  2020-05-20
  • 网络出版日期:  2021-02-05
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回