留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Properties and microstructures of A3-3 matrix graphite for pebble fuel elements after high temperature purification at different temperatures

ZHOU Xiang-wen ZHANG Kai-hong YANG Yang WANG Lei ZHANG Jie LU Zhen-ming LIU Bing TANG Ya-ping

周湘文, 张凯红, 杨杨, 王磊, 张杰, 卢振明, 刘兵, 唐亚平. 不同温度下高温纯化后球形燃料元件A3-3基体石墨的性能和微观结构[J]. 新型炭材料. doi: 10.1016/S1872-5805(21)60048-3
引用本文: 周湘文, 张凯红, 杨杨, 王磊, 张杰, 卢振明, 刘兵, 唐亚平. 不同温度下高温纯化后球形燃料元件A3-3基体石墨的性能和微观结构[J]. 新型炭材料. doi: 10.1016/S1872-5805(21)60048-3
ZHOU Xiang-wen, ZHANG Kai-hong, YANG Yang, WANG Lei, ZHANG Jie, LU Zhen-ming, LIU Bing, TANG Ya-ping. Properties and microstructures of A3-3 matrix graphite for pebble fuel elements after high temperature purification at different temperatures[J]. NEW CARBON MATERIALS. doi: 10.1016/S1872-5805(21)60048-3
Citation: ZHOU Xiang-wen, ZHANG Kai-hong, YANG Yang, WANG Lei, ZHANG Jie, LU Zhen-ming, LIU Bing, TANG Ya-ping. Properties and microstructures of A3-3 matrix graphite for pebble fuel elements after high temperature purification at different temperatures[J]. NEW CARBON MATERIALS. doi: 10.1016/S1872-5805(21)60048-3

不同温度下高温纯化后球形燃料元件A3-3基体石墨的性能和微观结构

doi: 10.1016/S1872-5805(21)60048-3
基金项目: 国家科技重大专项(ZX06901)
详细信息
    通讯作者:

    周湘文,副研究员. E-mail: xiangwen@tsinghua.edu.cn

  • 中图分类号: TQ127.1+1

Properties and microstructures of A3-3 matrix graphite for pebble fuel elements after high temperature purification at different temperatures

Funds: Chinese National S&T Major Project (ZX06901)
More Information
  • 摘要: 为了研究高温纯化对高温气冷堆球形燃料元件用A3-3基体石墨的影响,对不同温度下纯化后A3-3基体石墨的综合性能和微观结构进行了对比分析和表征。结果表明,即使将纯化温度从1900 ℃降低到1600 ℃,高温纯化处理后基体石墨的综合性能均满足技术要求。 X射线衍射分析结果表明,纯化后基体石墨的微观结构得到了显著提升,并且随着高温纯化温度的升高,基体石墨的石墨化有序度逐渐提高,其微观组织结构也逐渐优化,这有利于基体石墨综合性能的提升。当纯化温度从1600 ℃继续升高时,纯化后基体石墨的灰分和杂质含量基本保持不变,在更高温度下纯化后基体石墨的微观结构优化对改善其抗氧化腐蚀性能起到了决定性作用。因此,高温纯化工艺在球形燃料元件的生产中非常重要和必要。该研究也为未来将球形燃料元件的高温纯化温度从1900 ℃降至1600 ℃提供了重要依据,有助于在将来的球形燃料元件商业化生产中提高生产效率和降低生产成本。
  • Figure  1.  XRD patterns of PRC samples treated at different temperatures.

    Figure  2.  Pore information of MG-800 and MG-1600 characterized by mercury porosimetry.

    Table  1.   The ash contents and EBCs of raw materials for A3-3 MG (μg g−1).

    Natural flake graphite powderArtificial graphite powderPhenol resin
    Ash contents10.011.543.0
    EBC0.2230.0870.330
    下载: 导出CSV

    Table  2.   Specimen information for property and microstructure characterization of MG.

    PropertyShapeDimension (mm)OrientationAmount
    Crush strengthPebbler=59.6-60.2AX5
    TR5
    Thermal conductivityCylinderØ12.7×2AX3
    TR3
    Erosion ratePebbler=59.6-60.2N/A20
    Corrosion ratePebbler=59.6-60.2N/A3
    Ash contentPebbler=59.6-60.2N/A2
    Mercury intrusion
    porosimetry
    CylinderØ12.7×25Random1
    下载: 导出CSV

    Table  3.   Weight and dimensional changes of MG pebbles through HTP.

    Changes /100%Heat treatment under different temperatures (℃)
    1600170018001900
    Weight0.290.300.310.31
    Axial dimension0.170.230.280.31
    Transverse dimension0.140.200.250.29
    Volume0.450.630.780.89
    下载: 导出CSV

    Table  4.   Comprehensive properties of MG treated with different heat treatment temperatures.

    PropertyAverage±deviationSpecification
    MG-800MG-1600MG-1700MG-1800MG-1900
    Density (g/cm3)1.724±0.0011.727±0.0021.730±0.0021.732±0.0011.734±0.0011.70-1.77
    AX crush strength (kN)22.54±1.2927.45±0.7127.18±1.2727.13±0.8626.67±0.66≥18.0
    TR crush strength (kN)17.43±1.2019.37±0.6818.99±0.4119.47±0.3419.57±0.47
    Corrosion ratea (mg/cm2·h)1.88±0.070.91±0.050.75±0.050.63±0.050.53±0.06≤1.3
    Erosion rate (mg/h·Pebble)7.94±0.483.07±0.112.03±0.131.81±0.161.48±0.09≤6.0
    AX Thermal conductivityb (W·m−1·K−1)31.73±0.5635.93±0.7836.78±0.6637.40±0.8237.86±0.98≥25.0
    TR Thermal conductivityb (W·m−1·K−1)36.78±0.7638.90±0.6439.33±0.8339.65±0.7739.88±0.75
    Ash content (1×10−6)18.20±1.0012.30±0.5011.00±1.0010.00 ±1.5010.50±1.00≤300
    Note: a 1000 ℃, 10 h, atmosphere was He+1 vol% H2O. b The value of thermal conductivity at 1000 ℃.
    下载: 导出CSV

    Table  6.   The d002 values of PRC samples treated at different temperatures by XRD.

    SamplesPRC-800PRC-1600PRC-1700PRC-1800PRC-1900
    d002 (nm)0.39180.36940.36450.35870.3581
    下载: 导出CSV

    Table  5.   The ash contents and typical impurity elements of MG pebbles (1×10−6).

    ElementApparatusMG-800MG-1600MG-1700MG-1800MG-1900
    Ash contentN/A18.212.311.010.010.5
    AlICP-OES0.3020.2220.2560.1280.257
    CaICP-OES1.9360.8490.7990.6670.711
    CrICP-MS0.1850.1560.1330.1130.119
    CuICP-MS1.8610.0140.0110.0100.010
    FeICP-OES4.4733.1511.9171.4511.387
    MnICP-MS0.1280.0650.0510.0270.021
    MoICP-MS0.1040.0200.0270.0160.010
    NiICP-MS1.3130.5230.3240.2070.194
    ZnICP-OES0.2600.0150.0200.0140.012
    下载: 导出CSV

    Table  7.   Porosities of MG specimens measured by mercury porosimetry.

    SpecimensMG-800MG-1600MG-1700MG-1800MG-1900
    Porosity (%)15.199216.093216.412616.767717.0181
    Skeletal density (g/cm3)2.06742.09242.10822.12432.1376
    下载: 导出CSV
  • [1] Zhang Z Y, Dong Y J, Li F, et al. The Shandong Shidao Bay 200 MWe high-temperature gas-cooled reactor pebble-bed module (HTR-PM) demonstration power plant: An engineering and technical innovation[J]. Engineering,2016,2(1):112-118. doi: 10.1016/J.ENG.2016.01.020
    [2] Zhou X W, Yang Y, Song J, et al. Carbon materials in a high temperature gas-cooled reactor pebble-bed module[J]. New Carbon Materials,2018,33(2):97-108. doi: 10.1016/S1872-5805(18)60328-2
    [3] Zhou X W, Lu Z M, Zhang J, et al. Preparation of pebble fuel elements for HTR-PM in INET[J]. Nuclear Engineering and Design,2013,263:456-461. doi: 10.1016/j.nucengdes.2013.07.001
    [4] Zhou X W, Lu Z M, Zhang J, et al. Study on the comprehensive properties and microstructures of A3-3 matrix graphite related to the high temperature purification treatment [J]. Science and Technology of Nuclear Installations, vol. 2018, Article ID 6084747, 10 pages, 2018.
    [5] Zhou X W, Yang Y, Ma J T, et al. Effects of purification on the properties and microstructures of natural flake and artificial graphite powders[J]. Nuclear Engineering and Design,2020,360:110527. doi: 10.1016/j.nucengdes.2020.110527
    [6] ASTM Standard test method for determination of pore volume and pore volume distribution of soil and rock by mercury intrusion porosimetry[S]. Tech Rep ASTM D4404-10, ASTM International, West Conshohocken, PA, USA, 2010, https://www.astm.org/.
    [7] Pappano P J, Burchell T D, Hunn J D, et al. A novel approach to fabricating fuel compacts for the next generation nuclear plant (NGNP)[J]. Journal of Nuclear Materials,2008,381:25-38. doi: 10.1016/j.jnucmat.2008.07.032
    [8] Windes W, Burchell T, Carroll M. Graphite technology development plan[R]. Technical report 23747, Idaho National Laboratory, Idaho, USA, 2010.
    [9] Lee J J, Ghosh T K, Loyalka S K. Comparison of NBG-18, NBG-17, IG-110 and IG-11 oxidation kinetics in air[J]. Journal of Nuclear Materials,2018,500:64-71. doi: 10.1016/j.jnucmat.2017.11.053
    [10] Walker P L, Rusinko F, Austin L G. Gas reactions of carbon[J]. Advances in Catalysis,1959,11:133-221.
    [11] Michio I. Materials Science and Engineering of Carbon: Characterization[M]. USA: Elsevier Science, 2016.
    [12] Zheng G Q, Xu P, Sridharan K, et al. Characterization of structural defects in nuclear graphite IG-110 and NBG-18[J]. Journal of Nuclear Materials,2014,446:193-199. doi: 10.1016/j.jnucmat.2013.12.013
  • 加载中
图(2) / 表(7)
计量
  • 文章访问数:  125
  • HTML全文浏览量:  58
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-14
  • 修回日期:  2020-06-03
  • 网络出版日期:  2021-03-16

目录

    /

    返回文章
    返回