留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Microstructure of high thermal conductive mesophase pitch-based carbon fibers

YE Chong WU Huang ZHU Shi-peng FAN Zhen HUANG Dong HAN Fei LIU Jin-shui YANG Jian-xiao LIU Hong-bo

叶崇, 吴晃, 朱世鹏, 樊桢, 黄东, 韩飞, 刘金水, 杨建校, 刘洪波. 高导热中间相沥青基炭纤维的微观结构研究[J]. 新型炭材料. doi: 10.1016/S1872-5805(21)60050-1
引用本文: 叶崇, 吴晃, 朱世鹏, 樊桢, 黄东, 韩飞, 刘金水, 杨建校, 刘洪波. 高导热中间相沥青基炭纤维的微观结构研究[J]. 新型炭材料. doi: 10.1016/S1872-5805(21)60050-1
YE Chong, WU Huang, ZHU Shi-peng, FAN Zhen, HUANG Dong, HAN Fei, LIU Jin-shui, YANG Jian-xiao, LIU Hong-bo. Microstructure of high thermal conductive mesophase pitch-based carbon fibers[J]. NEW CARBON MATERIALS. doi: 10.1016/S1872-5805(21)60050-1
Citation: YE Chong, WU Huang, ZHU Shi-peng, FAN Zhen, HUANG Dong, HAN Fei, LIU Jin-shui, YANG Jian-xiao, LIU Hong-bo. Microstructure of high thermal conductive mesophase pitch-based carbon fibers[J]. NEW CARBON MATERIALS. doi: 10.1016/S1872-5805(21)60050-1

高导热中间相沥青基炭纤维的微观结构研究

doi: 10.1016/S1872-5805(21)60050-1
基金项目: 湖南省科学技术厅创新创业技术投资项目(2018KG5065);湖南创新型省份建设专项经费资助(2019GK2021, 2019RS2058)
详细信息
    通讯作者:

    黄 东,博士. E-mail:yellow-east@qq.com

    刘金水,博士,教授. E-mail:Jsliu@hnu.edu.cn

  • 中图分类号: TQ536.2

Microstructure of high thermal conductive mesophase pitch-based carbon fibers

Funds: The Innovation and Entrepreneurship Investment Project of Hunan Provincial Science and Technology Department (2018GK5065); Special Fund for Innovative Construction Province of Hunan (2019GK2021, 2019RS2058)
More Information
  • 摘要: 本文研究了高导热(500~1127 W·m−1·K−1)中间相沥青基炭纤维的微观结构特征,初步建立了微观结构特征与导热性能之间的影响关系。通过XRD、拉曼光谱、SEM和TEM对纤维的显微结构进行了系统表征,结果表明,辐射状的纤维结构热导率较高,并伴随着劈裂状结构特征。La对热导率的影响比Lc更加显著,纤维截面上的R值可作为评估热导率的重要参照指标。在本研究所涉及的纤维中,石墨微晶尺寸越大,微晶缺陷越少,石墨微晶片层沿纤维轴向取向度越好,则炭纤维的热导率越高。
  • Figure  1.  SEM micrographs and sketches of mesophase pitch-based carbon fibers: (a) XN-90, (b) K13C2U, (c) K13D2U, (d) K1100 and (e) HNU-3000.

    Figure  2.  XRD patterns of the five kinds of carbon fiber with high thermal conductivities: (a) Equatorial scan, (b) Meridional scan, (c) Azimuthal scan on (002) crystal face and (d) powder diffraction.

    Figure  3.  Raman spectra of the 5 kinds of carbon fiber: (a) surface and (b) cross section.

    Figure  4.  HRTEM images of the five kinds of carbon fiber: (a) XN-90, (b) K13C2U, (c) K13D2U, (d) K1100 and (e) HNU-3000.

    Figure  5.  Sketches of the crystallite structure in the longitudinal section for the high thermal conductive carbon fibers.

    Table  1.   Properties of the five types of mesophase pitch-based carbon fibers.

    SampleR(Ω)S(μm2)ρ(μΩ·m)λ1(W·m−1·K−1)λ2(W·m−1·K−1)λ3(W·m−1·K−1)λ*(W·m−1·K−1)
    XN-901023.1773.272.95428.89383.76501.27500
    K13C2U789.0065.942.07609.87566.39651.64620
    K13D2U423.3395.421.58799.08757.30762.98800
    K1100362.3380.471.151099.421058.14884.861100
    HNU-3000192.57165.781.121127.001088.19893.27
    Note: λ* manufacturers’ data[24, 25]
    下载: 导出CSV

    Table  2.   Crystalline parameters and degree of graphitization of carbon fibers.

    Sample2θ002(°)d002(nm)Lc(002)(nm)La(100)(nm)g(%)aZ(°)
    XN-9026.380.337923.0738.7071.469.33
    K13C2U26.410.337526.0546.0075.999.20
    K13D2U26.430.337328.9550.6178.179.04
    K110026.470.336834.2270.3084.298.06
    HNU-300026.480.336634.6778.2685.889.23
    Note: aDegree of graphitization (g) was calculated by the equation g=(0.3440−d002)/(0.3440−0.3354)
    下载: 导出CSV
  • [1] Kumar S, Anderson D, Crasto A. Carbon fibre compressive strength and its dependence on structure and morphology[J]. Journal of Materials Science,1993,28(2):423-439. doi: 10.1007/BF00357820
    [2] Edie D D. The effect of processing on the structure and properties of carbon fibers[J]. Carbon,1998,36(4):345-362. doi: 10.1016/S0008-6223(97)00185-1
    [3] Mochida I, Yoon S H, Takano N, et al. Microstructure of mesophase pitch-based carbon fiber and its control[J]. Carbon,1996,34(8):941-956. doi: 10.1016/0008-6223(95)00172-7
    [4] Mochida I, Yoon S H, Korai Y. Control of transversal texture in circular mesophase pitch-based carbon fibre using non-circular spinning nozzles[J]. Journal of materials science,1993,28(9):2331-2336. doi: 10.1007/BF01151662
    [5] Qin X, Lu Y, Xiao H, et al. A comparison of the effect of graphitization on microstructures and properties of polyacrylonitrile and mesophase pitch-based carbon fibers[J]. Carbon,2012,50(12):4459-4469. doi: 10.1016/j.carbon.2012.05.024
    [6] Hong S H, Korai Y, Mochida I. Mesoscopic texture at the skin area of mesophase pitch-based carbon fiber[J]. Carbon,2000,38(6):805-815. doi: 10.1016/S0008-6223(99)00175-X
    [7] Yao Y, Chen J, Liu L, et al. Mesophase pitch-based carbon fiber spinning through a filter assembly and the microstructure evolution mechanism[J]. Journal of materials science,2014,49(1):191-198. doi: 10.1007/s10853-013-7692-z
    [8] Matsumoto M, Iwashita T, Arai Y, et al. Effect of spinning conditions on structures of pitch-based carbon fiber[J]. Carbon,1993,31(5):715-720. doi: 10.1016/0008-6223(93)90008-X
    [9] Wang L, Liu Z, Guo Q, et al. Structure of silicon-modified mesophase pitch-based graphite fibers[J]. Carbon,2015,94:335-341. doi: 10.1016/j.carbon.2015.06.068
    [10] Alway-Cooper R M, Anderson D P, Ogale A A. Carbon black modification of mesophase pitch-based carbon fibers[J]. Carbon,2013,59:40-48. doi: 10.1016/j.carbon.2013.02.048
    [11] Endo M. Structure of mesophase pitch-based carbon fibres[J]. Journal of Materials Science,1988,23(2):598-605. doi: 10.1007/BF01174692
    [12] Huang Y, Young R. Microstructure and mechanical properties of pitch-based carbon fibres[J]. Journal of materials science,1994,29(15):4027-4036. doi: 10.1007/BF00355965
    [13] Pennock G M, Taylor G H, Gerald J D F. Microstructure in a series of mesophase pitch-based fibers from du pont: zones, folds, and disclinations[J]. Carbon,1993,31(4):591-609. doi: 10.1016/0008-6223(93)90114-P
    [14] Patterson A L. The scherrer formula for X-Ray particle size determination[J]. Physical Review,1939,56(10):978-982. doi: 10.1103/PhysRev.56.978
    [15] Edie D D, Fain C C, Robinson K E, et al. Ribbon-shape carbon fibers for thermal management[J]. Carbon,1993,31(6):941-949. doi: 10.1016/0008-6223(93)90196-H
    [16] Lu S, Blanco C, Rand B. Large diameter carbon fibres from mesophase pitch[J]. Carbon,2002,40(12):2109-2116. doi: 10.1016/S0008-6223(02)00060-X
    [17] Edie D D, Robinson K E, Fleurot O, et al. High thermal conductivity ribbon fibers from naphthalene-based mesophase[J]. Carbon,1994,32(6):1045-1054. doi: 10.1016/0008-6223(94)90213-5
    [18] Zhang X, Fujiwara S, Fujii M. Measurements of thermal conductivity and electrical conductivity of a single carbon fiber[J]. International Journal of Thermophysics,2000,21(4):965-980. doi: 10.1023/A:1006674510648
    [19] Yamamoto I. J. P. Patent, 194117 (1998): JP.
    [20] Lavin J, Boyington D, Lahijani J, et al. The correlation of thermal-conductivity with electrical-resistivity in mesophase pitch-based carbon-fiber[J]. Carbon,1993,31(6):1001. doi: 10.1016/0008-6223(93)90207-Q
    [21] He F, Yang Y G. Super thermal conductive mesophase pitch-based carbon fibers[J]. Hi-tech Fiber & Application,2003,5:27-31.
    [22] Nika D L, Pokatilov E P, Askerov A S, et al. Phonon thermal conduction in graphene: Role of umklapp and edge roughness scattering[J]. Physical Review B,2009,79(15
    [23] Katagiri G, Ishida H, Ishitani A. Raman spectra of graphite edge planes[J]. Carbon,1988,26(4):565-571. doi: 10.1016/0008-6223(88)90157-1
    [24] Minus M, Kumar S. The processing, properties, and structure of carbon fibers[J]. Jom,2005,57(2):52-58. doi: 10.1007/s11837-005-0217-8
    [25] Emmerich F G. Young’s modulus, thermal conductivity, electrical resistivity and coefficient of thermal expansion of mesophase pitch-based carbon fibers[J]. Carbon,2014,79:274-293. doi: 10.1016/j.carbon.2014.07.068
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  140
  • HTML全文浏览量:  75
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-21
  • 修回日期:  2019-11-27
  • 网络出版日期:  2021-03-17

目录

    /

    返回文章
    返回