留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Preparation and lithium storage of anthracite-based graphite anode materials

LI Yuan TIAN Xiao-dong SONG Yan YANG Tao WU Shi-jie LIU Zhan-jun

李圆, 田晓冬, 宋燕, 杨桃, 武世杰, 刘占军. 无烟煤基石墨的制备及储锂性能. 新型炭材料(中英文), 2022, 37(6): 1163-1171. doi: 10.1016/S1872-5805(21)60057-4
引用本文: 李圆, 田晓冬, 宋燕, 杨桃, 武世杰, 刘占军. 无烟煤基石墨的制备及储锂性能. 新型炭材料(中英文), 2022, 37(6): 1163-1171. doi: 10.1016/S1872-5805(21)60057-4
LI Yuan, TIAN Xiao-dong, SONG Yan, YANG Tao, WU Shi-jie, LIU Zhan-jun. Preparation and lithium storage of anthracite-based graphite anode materials. New Carbon Mater., 2022, 37(6): 1163-1171. doi: 10.1016/S1872-5805(21)60057-4
Citation: LI Yuan, TIAN Xiao-dong, SONG Yan, YANG Tao, WU Shi-jie, LIU Zhan-jun. Preparation and lithium storage of anthracite-based graphite anode materials. New Carbon Mater., 2022, 37(6): 1163-1171. doi: 10.1016/S1872-5805(21)60057-4

无烟煤基石墨的制备及储锂性能

doi: 10.1016/S1872-5805(21)60057-4
基金项目: 国家自然科学基金(52072383,U1610252),山西省自然科学基金(201801D221371),山西省优秀博士引进资助(SQ2019001)
详细信息
    通讯作者:

    田晓冬,助理研究员. E-mail:tianxiaodong0124@163.com

    宋 燕,研究员. E-mail:songyan@sxicc.ac.cn

  • 中图分类号: TQ127.1+1

Preparation and lithium storage of anthracite-based graphite anode materials

More Information
  • 摘要: 以无烟煤为原料,以工业硅粉为催化剂进行催化石墨化,制备了具有不同微观结构的煤基石墨,分析了催化反应机制,并考察了所制备的煤基石墨作为锂离子电池负极的电化学性能,进行了结构与性能的相关性研究。结果表明:当催化剂质量分数为5%时,所得石墨(G-2800-5%)的微晶尺寸较大,有序度较高,石墨化度为91.5%。将其用作锂离子电池负极材料时,表现出较好的电化学特性,在0.1 A g−1电流密度下稳定可逆容量为369 mAh g−1,当电流密度增大至1 A g−1,依然保持了209 mAh g−1的容量,在0.2 A g−1电流密度下循环200次的容量保持率可达92.2%。G-2800-5%样品石墨结构有序度高,表面形成的SEI膜薄均匀且锂离子的不可逆损失少,因此,其综合电化学性能较好。
  • FIG. 1964.  FIG. 1964.

    FIG. 1964..  FIG. 1964.

    Figure  1.  Illustration of the fabrication process of graphitized anthracite

    Figure  2.  XRD patterns of samples

    Figure  3.  Raman spectra of samples

    Figure  4.  Schematic diagram for the mechanism of catalytic graphitization

    Figure  5.  (a) Charge/discharge curves and (b) CV curves of as-obtained samples at 0.1 A g−1 and 0.1 mV s−1, respectively, (c) CV curves of G-2800-5% for the initial 3 cycles, (d) cyclic performance, (e) rate performance, and Nyquist plots of (f) as-prepared samples

    Table  1.   Lattice parameters of samples

    Sampled(002)/(nm)La/(nm)Lc/(nm)GID/IG
    G-2800-0%0.3364954389.5%0.09
    G-2800-5%0.33611364791.5%0.07
    G-2800-10%0.33631054589.5%0.10
    下载: 导出CSV

    Table  2.   Electrochemical performance of samples

    SampleInitial
    (mAh g−1)
    200th
    (mAh g−1)
    0.1 A g−1
    (mAh g−1)
    0.2 A g−1
    (mAh g−1)
    0.5 A g−1
    (mAh g−1)
    1 A g−1
    (mAh g−1)
    G-2800-0%320.1287.9341.2321.3282.5186.8
    G-2800-5%393.7325.6369.0353.2305.9209.0
    G-2800-10%345.7267.7346.7327.4287.0208.2
    Note: Initial means initial charge capacity. 200th means the capacity after 200 cycles.
    下载: 导出CSV

    Table  3.   Comparison of first charging performance of sample with other literatures

    SamplePrecursorTemperture
    (°C)
    CatalyzerInitial charge
    (mAh g−1)
    Ref.
    SG-2800Anthracite2800379.1/0.1 C[28]
    GAAnthracite2800340.2/
    37 mA g−1
    [13]
    GAAnthracite2800361.4/0.1 C[29]
    AnthraciteAnthracite1100370.0/
    30 mA g−1
    [12]
    TXG/2800Anthracite2800299.0/0.2 C[10]
    TXG/LaAnthracite2800La2O3337.2/0.2 C[10]
    G-2800-5%Anthracite2800Si393.7/0.1 A g−1This work
    下载: 导出CSV

    Table  4.   AC impedance fitting parameters of the graphite samples

    SampleRSEI (Ω)Rct (Ω)W(Ω) (10−6)
    G-2800-0%68.40.23809.1
    G-2800-5%33.50.12714.4
    G-2800-10%72.30.05845.2
    下载: 导出CSV
  • [1] He Y, Matthews B, Wang J, et al. Innovation and challenges in materials design for flexible rechargeable batteries: From 1D to 3D[J]. Journal of Materials Chemistry A,2018,6(3):735-753. doi: 10.1039/C7TA09301B
    [2] Cano Z P, Banham D, Ye S, et al. Batteries and fuel cells for emerging electric vehicle markets[J]. Nature Energy,2018,3(4):279-289.
    [3] Xu T, Zhou C, Zhou H, et al. Synthesis of alumina-coated natural graphite for highly cycling stability and safety of Li-ion batteries[J]. Chinese Journal of Chemistry,2019,37(4):342-346. doi: 10.1002/cjoc.201800559
    [4] Asenbauer J, Eisenmann T, Kuenzel M, et al. The success story of graphite as a lithium-ion anode material- fundamentals, remaining challenges, and recent developments including silicon (oxide) composites[J]. Sustainable Energy & Fuels,2020,4(11):5387-5416.
    [5] Li X, Sun X, Hu X, et al. Review on comprehending and enhancing the initial coulombic efficiency of anode materials in lithium-ion/sodium-ion batteries[J]. Nano Energy,2020,77:105143. doi: 10.1016/j.nanoen.2020.105143
    [6] Wang R, Yu J, Islam F, et al. State-of-the-art research and applications of carbon foam composite materials as electrodes for high-capacity lithium batteries[J]. Energy & Fuels,2020,34(7):7935-7954.
    [7] Adams R A, Varma A, Pol V G. Carbon anodes for nonaqueous alkali metal-ion batteries and their thermal safety aspects[J]. Advanced Energy Materials,2019,9(25):1900550.
    [8] Andrésen J M, Burgess C E, Pappano P J, et al. New directions for non-fuel uses of anthracites[J]. Fuel Processing Technology,2004,85(12):1373-1392. doi: 10.1016/j.fuproc.2003.05.001
    [9] Qiu T, Yang J G, Bai X J. Investigation on microstructural changes of anthracite during graphitization and effect of silica content on product crystal structure[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects,2019:1-14.
    [10] Wang T, Wang Y, Cheng G, et al. Catalytic graphitization of anthracite as an anode for lithium-ion batteries[J]. Energy & Fuels,2020,34(7):8911-8918.
    [11] Cameán I, Lavela P, Tirado J L, et al. On the electrochemical performance of anthracite-based graphite materials as anodes in lithium-ion batteries[J]. Fuel,2010,89(5):986-991.
    [12] Zhang X. Study on Taixi anthrachite coal to prepare Li-ion battery anode materials[J]. Coal Conversion,2015,38(1):75-78.
    [13] Jian N, Li H. Study on graphitized anthracite as anode material for lithium ion batteries[J]. Carbon Techniques,2019,38(1):7-10.
    [14] Ma C, Zhao Y, Li J, et al. The electrochemical performance of pitch coke anodes containing hollow carbon nanostructures and nickel nanoparticles for high-power lithium ion batteries[J]. Electrochim Acta,2013,112:394-402. doi: 10.1016/j.electacta.2013.08.129
    [15] Qiu H, Song Y, Liu L, et al. Investigation on microstructure and properties of recrystallized graphite by Si[J]. Journal of Aeron Autical Materials,2002,22(3):16-21.
    [16] Takahashi H, Kuroda H, Akamatu H. Correlation between stacking order and crystallite dimensions in carbons[J]. Carbon,1965,2(4):432-433. doi: 10.1016/0008-6223(65)90015-1
    [17] Tian X, Li X, Yang T, et al. Flexible carbon nanofiber mats with improved graphitic structure as scaffolds for efficient all-solid-state supercapacitor[J]. Electrochim Acta,2017,247:1060-1071. doi: 10.1016/j.electacta.2017.07.103
    [18] Li X, Sun N, Tian X, et al. Electrospun coal liquefaction residues/polyacrylonitrile composite carbon nanofiber nonwoven fabrics as high-performance electrodes for lithium/potassium batteries[J]. Energy & Fuels,2020,34(2):2445-2451. doi: 10.1021/acs.energyfuels.9b03637
    [19] Ōya A, Marsh H. Phenomena of catalytic graphitization[J]. Journal of Materials Science,1982,17(2):309-322.
    [20] Greenidge G, Erlebacher J. Porous graphite fabricated by liquid metal dealloying of silicon carbide[J]. Carbon,2020,165:45-54. doi: 10.1016/j.carbon.2020.04.028
    [21] Schulte-Fischedick J, Zern A, Mayer J, et al. The morphology of silicon carbide in C/C–SiC composites[J]. Materials Science and Engineering,2002,332(2002):146-52.
    [22] Zhang M Y, Huang D, Su Z A, et al. Research on catalytic graphitization progress of C/C-SiC composites by compression moulding[J]. Journal of Functional Materials,2012,43(01):46-9.
    [23] Cao Y, Hatchard T D, Dunlap R A, et al. Mechanofusion-derived Si-alloy/graphite composite electrode materials for Li-ion batteries[J]. Journal of Materials Chemistry A,2019,7:8335-8343.
    [24] Kim J Y, Park J, Lee M J, et al. Diffusion-dependent graphite electrode for all-solid-state batteries with extremely high energy density[J]. ACS Energy Letters,2020,5(9):2995-3004. doi: 10.1021/acsenergylett.0c01628
    [25] Xiao H, Liu H, He Y, et al. Study on coal-tar pitch carbon coated microcrystalline graphite used as lithium ion batteries anode[J]. Journal of Functional Materials,2013,44(19):2759-2763.
    [26] Huang J, Yan H, Xiao W. Study on the structure and properties of spherical natural graphite with different pitch-coating[J]. Carbon Techniques,2018,37(2):42-47.
    [27] Liu H, Li F, He Y, et al. Study on the pitch carbon-coated artificial graphite anode materials by vacuum-liquid phase method[J]. Journal of Hunan University (Natural Sciences),2016,43(6):70-75.
    [28] Xing B, Zhang C, Chen L, et al. Preparation of high performance coal-based graphite anode materials and their lithium storage properties[J]. Journal of China University of Mining & Technology,2019,48(5):1133-1142.
    [29] Wang J, Zhao H, Hu T, et al. High-performance anode materials based on anthracite for lithium-ion battery applications[J]. Chinese Journal of Engineering,2020,42(7):884-893.
    [30] Wang J, Liu D H, Wang Y Y, et al. Dual-carbon enhanced silicon-based composite as superior anode material for lithium ion batteries[J]. Journal of Power Sources,2016,307:738-745.
    [31] Xu Y L, Swaans E, Chen S B, et al. A high-performance Li-ion anode from direct deposition of Si nanoparticles[J]. Nano Energy,2017,38:477-485. doi: 10.1016/j.nanoen.2017.06.011
    [32] Zhuang Q, Chen Z, Dong Q, et al. Study on electrochemical impedance spectroscopy of the first cathodic polarization process of graphite anode[J]. Science China Bulletin,2006,51(1):17-20. doi: 10.1360/972005-550
    [33] Tran T, Yebka B, Song X, et al. Thermal and electrochemical studies of carbons for Li-ion batteries: 2. Correlation of active sites and irreversible capacity loss[J]. J Power Sources,2000,85(2):269-278. doi: 10.1016/S0378-7753(99)00343-2
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  733
  • HTML全文浏览量:  412
  • PDF下载量:  158
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-03
  • 修回日期:  2021-03-02
  • 网络出版日期:  2021-04-28
  • 刊出日期:  2022-11-28

目录

    /

    返回文章
    返回