留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The synthesis of porous carbons from a lignin-rich residue for high-performance supercapacitors

FANG Yan-yan ZHANG Qian-yu ZHANG Dong-dong CUI Li-feng

房严严, 张千玉, 张东东, 崔立峰. 基于富含木质素的生物质残渣制备超级电容器. 新型炭材料(中英文), 2022, 37(4): 743-751. doi: 10.1016/S1872-5805(21)60058-6
引用本文: 房严严, 张千玉, 张东东, 崔立峰. 基于富含木质素的生物质残渣制备超级电容器. 新型炭材料(中英文), 2022, 37(4): 743-751. doi: 10.1016/S1872-5805(21)60058-6
FANG Yan-yan, ZHANG Qian-yu, ZHANG Dong-dong, CUI Li-feng. The synthesis of porous carbons from a lignin-rich residue for high-performance supercapacitors. New Carbon Mater., 2022, 37(4): 743-751. doi: 10.1016/S1872-5805(21)60058-6
Citation: FANG Yan-yan, ZHANG Qian-yu, ZHANG Dong-dong, CUI Li-feng. The synthesis of porous carbons from a lignin-rich residue for high-performance supercapacitors. New Carbon Mater., 2022, 37(4): 743-751. doi: 10.1016/S1872-5805(21)60058-6

基于富含木质素的生物质残渣制备超级电容器

doi: 10.1016/S1872-5805(21)60058-6
基金项目: 国家自然科学青年基金(5210020050)、广东省粤莞联合青年基金(2020A1515110219)东莞理工学院创新研究基金(KCYKYQD2017015 & KCYCXPT2017005)
详细信息
    通讯作者:

    张东东,博士,讲师. E-mail:474177385@qq.com

    崔立峰,博士,教授,E-mail:lifeng.cui@gmail.com

  • 中图分类号: TQ127.1+1

The synthesis of porous carbons from a lignin-rich residue for high-performance supercapacitors

More Information
  • 摘要: 设计基于廉价原材料且具有分级多孔结构的超级电容碳电极是储能领域的一项重大挑战。在这项工作中,我们利用玉米秸秆中的木质素为原料,通过高温碳化和后续活化的方式合成了具有高比表面积的3D多孔碳。所制备的活化碳在0.5 A g−1的电流密度下质量比电容和面积比电容分别达到280 F g−1、1.3 F cm−2。组装的对称式扣式超级电容器可以在5200 W kg−1的功率密度下提供7.7 Wh kg−1的能量密度。本研究表明将木质素废弃物用作超级电容器的原材料是一种可行的废弃资源再利用的方法,可以潜在提升木质素的附加值。
  • FIG. 1658.  FIG. 1658.

    FIG. 1658..  FIG. 1658.

    Figure  1.  Illustration of fabrication of LDC

    Figure  2.  (a) SEM image, (b, c) TEM images of LDC-650 and (d, e, f) EDS mappings of N, O and S.

    Figure  3.  Raman spectra of (a) LDC-350, (b) LDC-450, (c) LDC-550, and (d) LDC-650.

    Figure  4.  (a) Nitrogen adsorption/desorption isotherms and pore sizes distribution of LDC, (b) survey XPS spectra of LDC, (c) high-resolution spectra of N 1s, and (d) high-resolution spectra of S 2p.

    Figure  5.  (a) CV of LDC at a scan rate of 10 mV s-1, (b) EIS of LDC with different pyrolytic temperatures, (c) CV of LDC-650 at various scan rates, (d) galvanostatic charge/discharge profiles of LDC-650 at various current densities.

    Figure  6.  (a,b) CV and GCD profiles of device, (c) nyquist plot of device, (d) cycling stability after 10000 cycles, (e) specific capacitance at different current densities and (f) ragone plot.

  • [1] Pandolfo A G, Hollenkamp A F. Carbon properties and their role in supercapacitors[J]. Journal of Power Sources,2006,157:11-27. doi: 10.1016/j.jpowsour.2006.02.065
    [2] Frackowiak E, Abbas Q, Béguin F. Carbon/carbon supercapacitors[J]. Journal of Energy Chemistry,2013,22:226-240. doi: 10.1016/S2095-4956(13)60028-5
    [3] Simon P, Gogotsi Y. Capacitive energy storage in nanostructured carbon–electrolyte systems[J]. Accounts of chemical research,2013,46:1094-1103. doi: 10.1021/ar200306b
    [4] Yang S, Wang S, Liu X, et al. Biomass derived interconnected hierarchical micro-meso-macro porous carbon with ultrahigh capacitance for supercapacitors[J]. Carbon,2019,147:540-549. doi: 10.1016/j.carbon.2019.03.023
    [5] Zhang L L, Zhao X S. Carbon-based materials as supercapacitor electrodes[J]. Chemical Society Reviews,2009:38.
    [6] Li Y, Wang G, Wei T, et al. Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors[J]. Nano Energy,2016,19:165-175. doi: 10.1016/j.nanoen.2015.10.038
    [7] Li X, Xing W, Zhuo S, et al. Preparation of capacitor's electrode from sunflower seed shell[J]. Bioresource Technology,2011,102:1118-1123. doi: 10.1016/j.biortech.2010.08.110
    [8] Abioye A M, Ani F N. Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: A review[J]. Renewable and Sustainable Energy Reviews,2015,52:1282-1293. doi: 10.1016/j.rser.2015.07.129
    [9] Suhas, Carrott P J, Ribeiro Carrott M M. Lignin--from natural adsorbent to activated carbon: a review[J]. Bioresource Technology,2007,98:2301-2312. doi: 10.1016/j.biortech.2006.08.008
    [10] Jin Y, Ruan X, Cheng X, et al. Liquefaction of lignin by polyethyleneglycol and glycerol[J]. Bioresource Technology,2011,102:3581-3583. doi: 10.1016/j.biortech.2010.10.050
    [11] Zheng X, Lv W, Tao Y, et al. Oriented and interlinked porous carbon nanosheets with an extraordinary capacitive performance[J]. Chemistry of Materials,2014,26:6896-6903. doi: 10.1021/cm503845q
    [12] Zhu Y, Chen M, zhang Y, et al. A biomass-derived nitrogen-doped porous carbon for high-energy supercapacitor[J]. Carbon,2018,140:404-412. doi: 10.1016/j.carbon.2018.09.009
    [13] Zhu J, Yan C, Zhang X, et al. A sustainable platform of lignin: from bioresources to materials and their applications in rechargeable batteries and supercapacitors[J]. Progress in Energy and Combustion Science,2020:76.
    [14] Kim S K, Kim Y K, Lee H, et al. Superior pseudocapacitive behavior of confined lignin nanocrystals for renewable energy-storage materials[J]. ChemSusChem,2014,7:1094-1101. doi: 10.1002/cssc.201301061
    [15] Bengtsson A, Bengtsson J, Sedin M, et al. Carbon fibers from lignin-cellulose precursors: Effect of stabilization conditions[J]. ACS Sustainable Chemistry & Engineering,2019,7:8440-8448.
    [16] Titirici M M, White R J, Brun N, et al. Sustainable carbon materials[J]. Chem Soc Rev,2015,44:250-290. doi: 10.1039/C4CS00232F
    [17] Yu X, Zhang K, Tian N, et al. Biomass carbon derived from sisal fiber as anode material for lithium-ion batteries[J]. Materials Letters,2015,142:193-196. doi: 10.1016/j.matlet.2014.11.160
    [18] Liu Y, Shi Z, Gao Y, et al. Biomass-swelling assisted synthesis of hierarchical porous carbon fibers for supercapacitor electrodes[J]. ACS Appllied Materials Interfaces,2016,8:28283-28290. doi: 10.1021/acsami.5b11558
    [19] Hao P, Zhao Z, Tian J, et al. Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode[J]. Nanoscale,2014,6:12120-12129. doi: 10.1039/C4NR03574G
    [20] Cheng P, Li T, Yu H, et al. Biomass-derived carbon fiber aerogel as a binder-free electrode for high-rate supercapacitors[J]. The Journal of Physical Chemistry C,2016,120:2079-2086. doi: 10.1021/acs.jpcc.5b11280
    [21] Schlee P, Hosseinaei O, Baker D, et al. From waste to wealth: From kraft lignin to free-standing supercapacitors[J]. Carbon,2019,145:470-480. doi: 10.1016/j.carbon.2019.01.035
    [22] Ho H C, Nguyen N A, Meek K M, et al. A solvent-free synthesis of lignin-derived renewable carbon with tunable porosity for supercapacitor electrodes[J]. ChemSusChem,2018,11:2953-2959. doi: 10.1002/cssc.201800929
    [23] Yang H, Yan R, Chen H, et al. Characteristics of hemicellulose, cellulose and lignin pyrolysis[J]. Fuel,2007,86:1781-1788. doi: 10.1016/j.fuel.2006.12.013
    [24] Zhang L, Shi G. Preparation of highly conductive graphene hydrogels for fabricating supercapacitors with high rate capability[J]. The Journal of Physical Chemistry C,2011,115:17206-17212. doi: 10.1021/jp204036a
    [25] Long C, Chen X, Jiang L, et al. Porous layer-stacking carbon derived from in-built template in biomass for high volumetric performance supercapacitors[J]. Nano Energy,2015,12:141-151. doi: 10.1016/j.nanoen.2014.12.014
    [26] Kan T, Strezov V, Evans T J. Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters[J]. Renewable and Sustainable Energy Reviews,2016,57:1126-1140. doi: 10.1016/j.rser.2015.12.185
    [27] Genovese M, Lian K. Polyoxometalate modified pine cone biochar carbon for supercapacitor electrodes[J]. Journal of Materials Chemistry A,2017,5:3939-3947. doi: 10.1039/C6TA10382K
    [28] Tian X, He Y, Song Y, et al. Flexible cross-linked electrospun carbon nanofiber mats derived from pitch as dual-functional materials for supercapacitors[J]. Energy & Fuels,2020,34:14975-14985.
    [29] Tian X, Li X, Yang T, et al. Flexible carbon nanofiber mats with improved graphitic structure as scaffolds for efficient all-solid-state supercapacitor[J]. Electrochimica Acta,2017,247:1060-1071. doi: 10.1016/j.electacta.2017.07.103
    [30] Yang T, Song Y, Tian X, et al. Pitch-based laminated carbon formed by pressure driving at low temperature as high-capacity anodes for lithium energy storage systems[J]. Chemistry,2020,26:16514-16520. doi: 10.1002/chem.202003493
    [31] Barbieri O, Hahn M, Herzog A, et al. Capacitance limits of high surface area activated carbons for double layer capacitors[J]. Carbon,2005,43:1303-1310. doi: 10.1016/j.carbon.2005.01.001
    [32] Song Z, Duan H, Li L, et al. High-energy flexible solid-state supercapacitors based on O, N, S-tridoped carbon electrodes and a 3.5 V gel-type electrolyte[J]. Chemical Engineering Journal,2019,372:1216-1225. doi: 10.1016/j.cej.2019.05.019
    [33] Miao Y, Ma Y, Wang Q. Plasma-assisted simultaneous reduction and nitrogen/sulfur codoping of graphene oxide for high-performance supercapacitors[J]. ACS Sustainable Chemistry & Engineering,2019,7:7597-7608.
    [34] Bleda-Martínez M J, Maciá-Agulló J A, Lozano-Castelló D, et al. Role of surface chemistry on electric double layer capacitance of carbon materials[J]. Carbon,2005,43:2677-2684. doi: 10.1016/j.carbon.2005.05.027
    [35] Okajima K, Ohta K, Sudoh M. Capacitance behavior of activated carbon fibers with oxygen-plasma treatment[J]. Electrochimica Acta,2005,50:2227-2231. doi: 10.1016/j.electacta.2004.10.005
    [36] Ra EJ, Raymundo-Piñero E, Lee Y H, et al. High power supercapacitors using polyacrylonitrile-based carbon nanofiber paper[J]. Carbon,2009,47:2984-2992. doi: 10.1016/j.carbon.2009.06.051
    [37] Lai L, Yang H, Wang L, et al. Preparation of supercapacitor electrodes through selection of graphene surface functionalities[J]. ACS nano,2012,6:5941-5951. doi: 10.1021/nn3008096
    [38] Qin F, Tian X, Guo Z, et al. Asphaltene-based porous carbon nanosheet as electrode for supercapacitor[J]. ACS Sustainable Chemistry & Engineering,2018,6:15708-15719.
    [39] Gamby J, Taberna P, Simon P, et al. Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors[J]. Journal of Power Sources,2001,101:109-116. doi: 10.1016/S0378-7753(01)00707-8
    [40] He X, Li R, Qiu J, et al. Synthesis of mesoporous carbons for supercapacitors from coal tar pitch by coupling microwave-assisted KOH activation with a MgO template[J]. Carbon,2012,50:4911-4921. doi: 10.1016/j.carbon.2012.06.020
    [41] Raymundo-Piñero E, Kierzek K, Machnikowski J, et al. Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes[J]. Carbon,2006,44:2498-2507. doi: 10.1016/j.carbon.2006.05.022
    [42] Hirschorn B, Orazem M E, Tribollet B, et al. Constant-phase-element behavior caused by resistivity distributions in films: I. Theory[J]. Journal of The Electrochemical Society,2010,157:C452. doi: 10.1149/1.3499564
    [43] Xu Z, Zhang X, Li K, et al. Green synthesis of Fe-decorated carbon sphere/nanosheet derived from bamboo for high-performance supercapacitor application[J]. Energy & Fuels,2020,35:827-838.
    [44] Mei B A, Munteshari O, Lau J, et al. Physical interpretations of Nyquist plots for EDLC electrodes and devices[J]. The Journal of Physical Chemistry C,2017,122:194-206.
    [45] Pajkossy T, Wandlowski T, Kolb D M. Impedance aspects of anion adsorption on gold single crystal electrodes[J]. Journal of Electroanalytical Chemistry,1996,414:209-220.
    [46] Usachov D, Vilkov O, Gruneis A, et al. Nitrogen-doped graphene: Efficient growth, structure, and electronic properties[J]. Nano Lett,2011,11:5401-5407. doi: 10.1021/nl2031037
    [47] Wen Z, Wang X, Mao S, et al. Crumpled nitrogen-doped graphene nanosheets with ultrahigh pore volume for high-performance supercapacitor[J]. Advanced Materials,2012,24:5610-5616. doi: 10.1002/adma.201201920
  • 20200199-Supporting Information.pdf
  • 加载中
图(7)
计量
  • 文章访问数:  618
  • HTML全文浏览量:  251
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-25
  • 修回日期:  2021-03-18
  • 网络出版日期:  2021-04-28
  • 刊出日期:  2022-07-20

目录

    /

    返回文章
    返回