留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Hierarchical Porous Carbon from lignin-rich residue for High-Performance Supercapacitor

FANG Yan-yan ZHANG Qian-yu ZHANG Dong-dong CUI Li-feng

FANG Yan-yan, ZHANG Qian-yu, ZHANG Dong-dong, CUI Li-feng. Hierarchical Porous Carbon from lignin-rich residue for High-Performance Supercapacitor[J]. NEW CARBON MATERIALS. doi: 10.1016/S1872-5805(21)60058-6
Citation: FANG Yan-yan, ZHANG Qian-yu, ZHANG Dong-dong, CUI Li-feng. Hierarchical Porous Carbon from lignin-rich residue for High-Performance Supercapacitor[J]. NEW CARBON MATERIALS. doi: 10.1016/S1872-5805(21)60058-6

doi: 10.1016/S1872-5805(21)60058-6

Hierarchical Porous Carbon from lignin-rich residue for High-Performance Supercapacitor

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Illustration of fabrication of LDC

    Figure  2.  (a) SEM image and (b, c) TEM images of LDC-650 (d, e, f) EDSmappings of N, O, and S.

    Figure  3.  Raman spectra of (a) LDC-350, (b) LDC-450, (c) LDC-550, (d) LDC-650.

    Figure  4.  (a) Nitrogen adsorption-desorption isotherms and pore sizes distribution of LDC (b) Full XPS spectra of LDC, (c) High-resolution spectra of N1s. (d) High-resolution spectra of S 2p.

    Figure  5.  (a) CV of LDC at a scan rate of 10 mV s-1, (b) EIS of LDC with different pyrolytic temperatures, (c) CV of LDC-650 at various scan rates, (d) galvanostatic charge/discharge profiles of LDC-650 at various current densities.

    Figure  6.  (a,b) CVand GCD profiles of device, (c) Nyquist plot of device, (d) cycling stability after 10000 cycles (e) Specific capacitance at different current densities, (f) Ragone plot.

  • [1] Pandolfo AG, Hollenkamp AF. Carbon properties and their role in supercapacitors[J]. Journal of Power Sources,2006,157:11-27. doi: 10.1016/j.jpowsour.2006.02.065
    [2] Frackowiak E, Abbas Q, Béguin F. Carbon/carbon supercapacitors[J]. Journal of Energy Chemistry,2013,22:226-240. doi: 10.1016/S2095-4956(13)60028-5
    [3] Simon P, Gogotsi Y. Capacitive energy storage in nanostructured carbon–electrolyte systems[J]. Accounts of chemical research,2013,46:1094-1103. doi: 10.1021/ar200306b
    [4] Yang S, Wang S, Liu X, et al. Biomass derived interconnected hierarchical micro-meso-macro porous carbon with ultrahigh capacitance for supercapacitors[J]. Carbon,2019,147:540-549. doi: 10.1016/j.carbon.2019.03.023
    [5] Zhang LL, Zhao XS. Carbon-based materials as supercapacitor electrodes[J]. Chemical Society Reviews,2009:38.
    [6] Li Y, Wang G, Wei T, et al. Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors[J]. Nano Energy,2016,19:165-175. doi: 10.1016/j.nanoen.2015.10.038
    [7] Li X, Xing W, Zhuo S, et al. Preparation of capacitor's electrode from sunflower seed shell[J]. Bioresource Technology,2011,102:1118-1123. doi: 10.1016/j.biortech.2010.08.110
    [8] Abioye AM, Ani FN. Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: A review[J]. Renewable and Sustainable Energy Reviews,2015,52:1282-1293. doi: 10.1016/j.rser.2015.07.129
    [9] Suhas, Carrott PJ, Ribeiro Carrott MM. Lignin--from natural adsorbent to activated carbon: a review[J]. Bioresource Technology,2007,98:2301-2312. doi: 10.1016/j.biortech.2006.08.008
    [10] Jin Y, Ruan X, Cheng X, et al. Liquefaction of lignin by polyethyleneglycol and glycerol[J]. Bioresource Technology,2011,102:3581-3583. doi: 10.1016/j.biortech.2010.10.050
    [11] Zheng X, Lv W, Tao Y, et al. Oriented and interlinked porous carbon nanosheets with an extraordinary capacitive performance[J]. Chemistry of Materials,2014,26:6896-6903. doi: 10.1021/cm503845q
    [12] Zhu Y, Chen M, zhang Y, et al. A biomass-derived nitrogen-doped porous carbon for high-energy supercapacitor[J]. Carbon,2018,140:404-412. doi: 10.1016/j.carbon.2018.09.009
    [13] Zhu J, Yan C, Zhang X, et al. A sustainable platform of lignin: from bioresources to materials and their applications in rechargeable batteries and supercapacitors[J]. Progress in Energy and Combustion Science,2020:76.
    [14] Kim SK, Kim YK, Lee H, et al. Superior pseudocapacitive behavior of confined lignin nanocrystals for renewable energy-storage materials[J]. ChemSusChem,2014,7:1094-1101. doi: 10.1002/cssc.201301061
    [15] Bengtsson A, Bengtsson J, Sedin M, et al. Carbon fibers from lignin-cellulose precursors: effect of stabilization conditions[J]. ACS Sustainable Chemistry & Engineering,2019,7:8440-8448.
    [16] Titirici MM, White RJ, Brun N, et al. Sustainable carbon materials[J]. Chem Soc Rev,2015,44:250-290. doi: 10.1039/C4CS00232F
    [17] Yu X, Zhang K, Tian N, et al. Biomass carbon derived from sisal fiber as anode material for lithium-ion batteries[J]. Materials Letters,2015,142:193-196. doi: 10.1016/j.matlet.2014.11.160
    [18] Liu Y, Shi Z, Gao Y, et al. Biomass-swelling assisted synthesis of hierarchical porous carbon fibers for supercapacitor electrodes[J]. ACS Appllied Materials Interfaces,2016,8:28283-28290. doi: 10.1021/acsami.5b11558
    [19] Hao P, Zhao Z, Tian J, et al. Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode[J]. Nanoscale,2014,6:12120-12129. doi: 10.1039/C4NR03574G
    [20] Cheng P, Li T, Yu H, et al. Biomass-derived carbon fiber aerogel as a binder-free electrode for high-rate supercapacitors[J]. The Journal of Physical Chemistry C,2016,120:2079-2086. doi: 10.1021/acs.jpcc.5b11280
    [21] Schlee P, Hosseinaei O, Baker D, et al. From waste to wealth: from kraft lignin to free-standing supercapacitors[J]. Carbon,2019,145:470-480. doi: 10.1016/j.carbon.2019.01.035
    [22] Ho HC, Nguyen NA, Meek KM, et al. A solvent-free synthesis of lignin-derived renewable carbon with tunable porosity for supercapacitor electrodes[J]. ChemSusChem,2018,11:2953-2959. doi: 10.1002/cssc.201800929
    [23] Yang H, Yan R, Chen H, et al. Characteristics of hemicellulose, cellulose and lignin pyrolysis[J]. Fuel,2007,86:1781-1788. doi: 10.1016/j.fuel.2006.12.013
    [24] Zhang L, Shi G. Preparation of highly conductive graphene hydrogels for fabricating supercapacitors with high rate capability[J]. The Journal of Physical Chemistry C,2011,115:17206-17212. doi: 10.1021/jp204036a
    [25] Long C, Chen X, Jiang L, et al. Porous layer-stacking carbon derived from in-built template in biomass for high volumetric performance supercapacitors[J]. Nano Energy,2015,12:141-151. doi: 10.1016/j.nanoen.2014.12.014
    [26] Kan T, Strezov V, Evans TJ. Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters[J]. Renewable and Sustainable Energy Reviews,2016,57:1126-1140. doi: 10.1016/j.rser.2015.12.185
    [27] Genovese M, Lian K. Polyoxometalate modified pine cone biochar carbon for supercapacitor electrodes[J]. Journal of Materials Chemistry A,2017,5:3939-3947. doi: 10.1039/C6TA10382K
    [28] Tian X, He Y, Song Y, et al. Flexible cross-linked electrospun carbon nanofiber mats derived from pitch as dual-functional materials for supercapacitors[J]. Energy & Fuels,2020,34:14975-14985.
    [29] Tian X, Li X, Yang T, et al. Flexible carbon nanofiber mats with improved graphitic structure as scaffolds for efficient all-solid-state supercapacitor[J]. Electrochimica Acta,2017,247:1060-1071. doi: 10.1016/j.electacta.2017.07.103
    [30] Yang T, Song Y, Tian X, et al. Pitch-based Laminated Carbon Formed by Pressure Driving at Low Temperature as High-Capacity Anodes for Lithium Energy Storage Systems[J]. Chemistry,2020,26:16514-16520. doi: 10.1002/chem.202003493
    [31] Barbieri O, Hahn M, Herzog A, et al. Capacitance limits of high surface area activated carbons for double layer capacitors[J]. Carbon,2005,43:1303-1310. doi: 10.1016/j.carbon.2005.01.001
    [32] Song Z, Duan H, Li L, et al. High-energy flexible solid-state supercapacitors based on O, N, S-tridoped carbon electrodes and a 3.5 V gel-type electrolyte[J]. Chemical Engineering Journal,2019,372:1216-1225. doi: 10.1016/j.cej.2019.05.019
    [33] Miao Y, Ma Y, Wang Q. Plasma-Assisted Simultaneous Reduction and Nitrogen/Sulfur Codoping of Graphene Oxide for High-Performance Supercapacitors[J]. ACS Sustainable Chemistry & Engineering,2019,7:7597-7608.
    [34] Bleda-Martínez MJ, Maciá-Agulló JA, Lozano-Castelló D, et al. Role of surface chemistry on electric double layer capacitance of carbon materials[J]. Carbon,2005,43:2677-2684. doi: 10.1016/j.carbon.2005.05.027
    [35] Okajima K, Ohta K, Sudoh M. Capacitance behavior of activated carbon fibers with oxygen-plasma treatment[J]. Electrochimica Acta,2005,50:2227-2231. doi: 10.1016/j.electacta.2004.10.005
    [36] Ra EJ, Raymundo-Piñero E, Lee YH, et al. High power supercapacitors using polyacrylonitrile-based carbon nanofiber paper[J]. Carbon,2009,47:2984-2992. doi: 10.1016/j.carbon.2009.06.051
    [37] Lai L, Yang H, Wang L, et al. Preparation of supercapacitor electrodes through selection of graphene surface functionalities[J]. ACS nano,2012,6:5941-5951. doi: 10.1021/nn3008096
    [38] Qin F, Tian X, Guo Z, et al. Asphaltene-based porous carbon nanosheet as electrode for supercapacitor[J]. ACS Sustainable Chemistry & Engineering,2018,6:15708-15719.
    [39] Gamby J, Taberna P, Simon P, et al. Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors[J]. Journal of Power Sources,2001,101:109-116. doi: 10.1016/S0378-7753(01)00707-8
    [40] He X, Li R, Qiu J, et al. Synthesis of mesoporous carbons for supercapacitors from coal tar pitch by coupling microwave-assisted KOH activation with a MgO template[J]. Carbon,2012,50:4911-4921. doi: 10.1016/j.carbon.2012.06.020
    [41] Raymundo-Piñero E, Kierzek K, Machnikowski J, et al. Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes[J]. Carbon,2006,44:2498-2507. doi: 10.1016/j.carbon.2006.05.022
    [42] Hirschorn B, Orazem ME, Tribollet B, et al. Constant-phase-element behavior caused by resistivity distributions in films: I. Theory[J]. Journal of The Electrochemical Society,2010,157:C452. doi: 10.1149/1.3499564
    [43] Xu Z, Zhang X, Li K, et al. Green synthesis of Fe-decorated carbon sphere/nanosheet derived from bamboo for high-performance supercapacitor application[J]. Energy & Fuels,2020,35:827-838.
    [44] Mei B-A, Munteshari O, Lau J, et al. Physical interpretations of Nyquist plots for EDLC electrodes and devices[J]. The Journal of Physical Chemistry C,2017,122:194-206.
    [45] Pajkossy T, Wandlowski T, Kolb DM. Impedance aspects of anion adsorption on gold single crystal electrodes[J]. Journal of Electroanalytical Chemistry,1996,414:209-220.
    [46] Usachov D, Vilkov O, Gruneis A, et al. Nitrogen-doped graphene: efficient growth, structure, and electronic properties[J]. Nano Lett,2011,11:5401-5407. doi: 10.1021/nl2031037
    [47] Wen Z, Wang X, Mao S, et al. Crumpled nitrogen-doped graphene nanosheets with ultrahigh pore volume for high-performance supercapacitor[J]. Advanced Materials,2012,24:5610-5616. doi: 10.1002/adma.201201920
  • 加载中
图(6)
计量
  • 文章访问数:  139
  • HTML全文浏览量:  38
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-01
  • 修回日期:  2020-01-01
  • 网络出版日期:  2021-04-28

目录

    /

    返回文章
    返回