留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

KOH-treated mesocarbon microbeads used as high-rate anode materials for potassium-ion batteries

XIAO Nan GUO Hong-da XIAO Jian WEI Yi-bo MA Xiao-qing ZHANG Xiao-yu QIU Jie-shan

肖南, 郭红达, 肖剑, 魏一波, 马晓晴, 张小宇, 邱介山. 氢氧化钾处理中间相炭微球应用于高倍率钾离子电池负极. 新型炭材料(中英文), 2023, 38(2): 327-336. doi: 10.1016/S1872-5805(21)60059-8
引用本文: 肖南, 郭红达, 肖剑, 魏一波, 马晓晴, 张小宇, 邱介山. 氢氧化钾处理中间相炭微球应用于高倍率钾离子电池负极. 新型炭材料(中英文), 2023, 38(2): 327-336. doi: 10.1016/S1872-5805(21)60059-8
XIAO Nan, GUO Hong-da, XIAO Jian, WEI Yi-bo, MA Xiao-qing, ZHANG Xiao-yu, QIU Jie-shan. KOH-treated mesocarbon microbeads used as high-rate anode materials for potassium-ion batteries. New Carbon Mater., 2023, 38(2): 327-336. doi: 10.1016/S1872-5805(21)60059-8
Citation: XIAO Nan, GUO Hong-da, XIAO Jian, WEI Yi-bo, MA Xiao-qing, ZHANG Xiao-yu, QIU Jie-shan. KOH-treated mesocarbon microbeads used as high-rate anode materials for potassium-ion batteries. New Carbon Mater., 2023, 38(2): 327-336. doi: 10.1016/S1872-5805(21)60059-8

氢氧化钾处理中间相炭微球应用于高倍率钾离子电池负极

doi: 10.1016/S1872-5805(21)60059-8
基金项目: 国家自然科学基金(U2003216); 中央高校基本科研业务费专项资金(DUT20LAB131)
详细信息
    通讯作者:

    邱介山,教授. E-mail:qiujs@mail.buct.edu.cn

  • 中图分类号: TQ127.1+1

KOH-treated mesocarbon microbeads used as high-rate anode materials for potassium-ion batteries

Funds: National Natural Science Foundation of China (U2003216); Fundamental Research Funds for the Central Universities of China (DUT20LAB131)
More Information
  • 摘要: 石墨具有成本低、放电稳定等优点,是钾离子电池极具发展前景的负极材料之一,但其倍率性能仍需改进。本文以中间相炭微球(MCMB)为原料,经KOH处理,设计了一种新型的石墨化负极。通过有限的氧化和轻微的嵌入,在MCMB表面形成了层间距增大的膨胀层,K+的扩散系数明显提高。作为负极时,改性MCMB在低于0.25 V下展现出高平台容量 (271 mAh g−1),优越的倍率性能(在1.0 A g−1下,容量可达160 mAh g−1),良好的循环稳定性(在0.1 A g−1下循环100圈后,容量维持为184 mAh g−1);当采用羧甲基纤维素作为黏结剂时,KOH处理的MCMB具有高的首次库仑效率(79.2%)。本工作为设计具有优良储钾性能的石墨化材料提供了一种简便的策略。
  • FIG. 2236.  FIG. 2236.

    FIG. 2236..  FIG. 2236.

    Figure  1.  SEM images of (a, c) MCMB and (b, d) K3C-900. (e, f) HRTEM images of K3C-900

    Figure  2.  Structure and chemical composition characterization of MCMB and K3C-900: (a) XRD patterns, (b) Raman spectra and (c) XPS spectra. (d) O1s XPS spectrum of K3C-900

    Figure  3.  Scheme of potassium-ion diffusion into (a) MCMB and (b) K3C-900

    Figure  4.  Initial five cycles of discharge-charge curves of (a) MCMB and (b) K3C-900 at 0.05 A g−1, CV profiles of (c) MCMB and (d) K3C-900 at a scan rate of 0.1 mV s−1

    Figure  5.  Electrochemical performance of MCMB and K3C-900: (a) Rate performance at current densities from 0.05 A g−1 to 2.00 A g−1, (b) Cycling performance at a current density of 0.1 A g−1, (c) Nyquist plots of MCMB and K3C-900. (d) The linear fitting between Z' versus ω−1/2 of MCMB and K3C-900 at low-frequency region

    Figure  6.  Operando XRD contour pattern of K3C-900 and the corresponding galvanostatic curve during the initial discharge

    Figure  7.  Electrochemical performance of MCMB and K3C-900 with CMC as binder: (a) Charge-discharge profiles of initial five cycles and (b) Cycling performance at 0.1 A g−1

    Figure  8.  (a) Rate performance comparison of K3C-900 with the reported carbon anodes. (b) Initial coulombic efficiency and discharge capacity (below 0.25 V) comparison of K3C-900 (using CMC as binder) with the reported carbon anodes

    Table  1.   Elemental analysis of MCMB and K3C-900

    C (wt.%)H (wt.%)N (wt.%)Odiff (wt.%)
    MCMB97.310.0402.65
    K3C-90096.070.1403.79
    Note: diff-by difference
    下载: 导出CSV
  • [1] Sun Y W, Yang T Z, Ji H Q, et al. Boosting the optimization of lithium metal batteries by molecular dynamics simulations: A perspective[J]. Advanced Energy Materials,2020,10:2002373. doi: 10.1002/aenm.202002373
    [2] Zhu Y H, Yang X, Bao D, et al. High-energy-density flexible potassium-ion battery based on patterned electrodes[J]. Joule,2018,2:736-746. doi: 10.1016/j.joule.2018.01.010
    [3] Hwang J Y, Myung S T, Sun Y K. Recent progress in rechargeable potassium batteries[J]. Advanced Functional Materials,2018,28:1802938. doi: 10.1002/adfm.201802938
    [4] Fan L, Ma R F, Zhang Q F, et al. Graphite anode for a potassium-ion battery with unprecedented performance[J]. Angewandte Chemie,2019,58:10500-10505. doi: 10.1002/anie.201904258
    [5] Xiao Z T, Meng J S, Xia F J, et al. K+ modulated K+/vacancy disordered layered oxide for high-rate and high-capacity potassium-ion batteries[J]. Energy & Environmental Science,2020,13:3129-3137.
    [6] Xu R, Yao Y, Wang H Y, et al. Unraveling the nature of excellent potassium storage in small-molecule se@peapod-like n-doped carbon nanofibers[J]. Advanced Materials,2020,32:e2003879. doi: 10.1002/adma.202003879
    [7] Wang X P, Han K, Qin D D, et al. Polycrystalline soft carbon semi-hollow microrods as anode for advanced k-ion full batteries[J]. Nanoscale,2017,9:18216-18222. doi: 10.1039/C7NR06645G
    [8] Chen C, Wu M Q, Wang Y S, et al. Insights into pseudographite-structured hard carbon with stabilized performance for high energy k-ion storage[J]. Journal of Power Sources,2019,444:227310. doi: 10.1016/j.jpowsour.2019.227310
    [9] Zhang W C, Yan Y J, Xie Z H, et al. Engineering of nanonetwork-structured carbon to enable high-performance potassium-ion storage[J]. Journal of Colloid and Interface Science,2020,561:195-202. doi: 10.1016/j.jcis.2019.11.042
    [10] Zeng S F, Chen X J, Xu R, et al. Boosting the potassium storage performance of carbon anode via integration of adsorption-intercalation hybrid mechanisms[J]. Nano Energy,2020,73:104807. doi: 10.1016/j.nanoen.2020.104807
    [11] Liu S L, Mao J F, Zhang L, et al. Manipulating the solvation structure of nonflammable electrolyte and interface to enable unprecedented stability of graphite anodes beyond 2 years for safe potassium-ion batteries[J]. Advanced Materials,2020,33:2006313.
    [12] Zhao Y, Yang L N, Ma C L, et al. One-step fabrication of fluorine-doped graphite derived from a low-grade microcrystalline graphite ore for potassium-ion batteries[J]. Energy & Fuels,2020,34:8993-9001.
    [13] Zeng S F, Zhou X F, Wang B, et al. Freestanding CNT-modified graphitic carbon foam as a flexible anode for potassium ion batteries[J]. Journal of Materials Chemistry A,2019,7:15774-15781. doi: 10.1039/C9TA03245B
    [14] Li X J, Lei Y, Qin L, et al. Mildly-expanded graphite with adjustable interlayer distance as high-performance anode for potassium-ion batteries[J]. Carbon,2021,172:200-206. doi: 10.1016/j.carbon.2020.10.023
    [15] Tai Z X, Zhang Q, Liu Y J, et al. Activated carbon from the graphite with increased rate capability for the potassium ion battery[J]. Carbon,2017,123:54-61. doi: 10.1016/j.carbon.2017.07.041
    [16] Chen L, Fan X H, Jiang Z, et al. Observation of “in-contact” characteristics of brooks–taylor mesophase spheres obtained by high-temperature centrifugation[J]. Carbon,2016,103:421-424. doi: 10.1016/j.carbon.2016.03.019
    [17] Yao J, Wang G X, Ahn J, et al. Electrochemical studies of graphitized mesocarbon microbeads as an anode in lithium-ion cells[J]. Journal of Power Sources,2003,114:292-297. doi: 10.1016/S0378-7753(02)00585-2
    [18] Xiao N, Zhang X Y, Liu C, et al. Coal-based carbon anodes for high-performance potassium-ion batteries[J]. Carbon,2019,147:574-581. doi: 10.1016/j.carbon.2019.03.020
    [19] Liu Y, Lu Y X, Xu Y S, et al. Pitch-derived soft carbon as stable anode material for potassium ion batteries[J]. Advanced Materials,2020,32:e2000505. doi: 10.1002/adma.202000505
    [20] Tian X Y, Zhou M H, Tan C L, et al. KOH activated n-doped novel carbon aerogel as efficient metal-free oxygen reduction catalyst for microbial fuel cells[J]. Chemical Engineering Journal,2018,348:775-785. doi: 10.1016/j.cej.2018.05.007
    [21] Yu J H, Yu C, Guo W, et al. Decoupling and correlating the ion transport by engineering 2D carbon nanosheets for enhanced charge storage[J]. Nano Energy,2019,64:103921. doi: 10.1016/j.nanoen.2019.103921
    [22] Wang J C, Kaskel S. KOH activation of carbon-based materials for energy storage[J]. Journal of Materials Chemistry,2012,22:23710. doi: 10.1039/c2jm34066f
    [23] Zhang H H, Luo C, He H N, et al. Nano-size porous carbon spheres as a high-capacity anode with high initial coulombic efficiency for potassium-ion batteries[J]. Nanoscale Horizons,2020,5:895-903. doi: 10.1039/D0NH00018C
    [24] Wang W, Zhou J H, Wang Z P, et al. Short-range order in mesoporous carbon boosts potassium-ion battery performance[J]. Advanced Energy Materials,2018,8:1701648. doi: 10.1002/aenm.201701648
    [25] Liu L, Chen Y, Xie Y H, et al. Understanding of the ultrastable K-ion storage of carbonaceous anode[J]. Advanced Functional Materials,2018,28:1870204. doi: 10.1002/adfm.201870204
    [26] Zhao J, Zou X X, Zhu Y J, et al. Electrochemical intercalation of potassium into graphite[J]. Advanced Functional Materials,2016,26:8103-8110. doi: 10.1002/adfm.201602248
    [27] An Y L, Fei H F, Zeng G F, et al. Commercial expanded graphite as a low–cost, long-cycling life anode for potassium–ion batteries with conventional carbonate electrolyte[J]. Journal of Power Sources,2018,378:66-72. doi: 10.1016/j.jpowsour.2017.12.033
    [28] Rahman M M, Hou C P, Mateti S, et al. Documenting capacity and cyclic stability enhancements in synthetic graphite potassium-ion battery anode material modified by low-energy liquid phase ball milling[J]. Journal of Power Sources,2020,476:228733. doi: 10.1016/j.jpowsour.2020.228733
    [29] Zhang W L, Yin J, Sun M L, et al. Direct pyrolysis of supermolecules: An ultrahigh edge-nitrogen doping strategy of carbon anodes for potassium-ion batteries[J]. Advanced Materials,2020,32:e2000732. doi: 10.1002/adma.202000732
    [30] Hu J X, Xie Y Y, Yin M, et al. Nitrogen doping and graphitization tuning coupled hard carbon for superior potassium-ion storage[J]. Journal of Energy Chemistry,2020,49:327-334. doi: 10.1016/j.jechem.2020.03.005
    [31] Zhang K, He Q, Xiong F Y, et al. Active sites enriched hard carbon porous nanobelts for stable and high-capacity potassium-ion storage[J]. Nano Energy,2020,77:105018. doi: 10.1016/j.nanoen.2020.105018
    [32] Tao L, Liu L, Chang R F, et al. Structural and interface design of hierarchical porous carbon derived from soybeans as anode materials for potassium-ion batteries[J]. Journal of Power Sources,2020,463:228172. doi: 10.1016/j.jpowsour.2020.228172
    [33] Liu C, Xiao N, Li H J, et al. Nitrogen-doped soft carbon frameworks built of well-interconnected nanocapsules enabling a superior potassium-ion batteries anode[J]. Chemical Engineering Journal,2020,382:121759. doi: 10.1016/j.cej.2019.05.120
    [34] Chen J M, Cheng Y, Zhang Q B, et al. Designing and understanding the superior potassium storage performance of nitrogen/phosphorus co‐doped hollow porous bowl‐like carbon anodes[J]. Advanced Functional Materials,2020,31:2007158.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  1001
  • HTML全文浏览量:  395
  • PDF下载量:  167
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-17
  • 修回日期:  2021-04-14
  • 网络出版日期:  2021-04-28
  • 刊出日期:  2023-04-07

目录

    /

    返回文章
    返回