留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Rational construction of Co-loaded ceramic composites by recycling gangue for microwave absorption

LI Guo-min SHI Shu-ping ZHU Bao-shun LIANG Li-ping ZHANG Ke-wei

LI Guo-min, SHI Shu-ping, ZHU Bao-shun, LIANG Li-ping, ZHANG Ke-wei. Rational construction of Co-loaded ceramic composites by recycling gangue for microwave absorption[J]. NEW CARBON MATERIALS. doi: 10.1016/S1872-5805(21)60064-1
Citation: LI Guo-min, SHI Shu-ping, ZHU Bao-shun, LIANG Li-ping, ZHANG Ke-wei. Rational construction of Co-loaded ceramic composites by recycling gangue for microwave absorption[J]. NEW CARBON MATERIALS. doi: 10.1016/S1872-5805(21)60064-1

doi: 10.1016/S1872-5805(21)60064-1

Rational construction of Co-loaded ceramic composites by recycling gangue for microwave absorption

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  XRD patterns of CoG composites sintered at different temperatures.

    Figure  2.  TG-DSC result of CoG composite.

    Figure  3.  SEM images of Gangue (a), CoG700-1.25M (b), CoG700-1.50M (c), CoG700-1.75M (d).

    Figure  4.  Raman spectra (a) and magnetic hysteresis loops (b) of the samples.

    Figure  6.  Complex permittivity real part (a) and imaginary part (b) for Gangue, CoG700-1.25M, CoG700-1.50M and CoG700-1.75M in the testing frequency.

    Figure  5.  Microwave RL curves of Gangue (a), CoG700-1.25M (b), CoG700-1.50M (c), CoG700-1.75M (d) with different coating thickness.

    Figure  7.  Complex permeability real part (a) and imaginary part (b), the values of µ"(µ')–2f–1 versus frequency (c), Attenuation constant (d) for Gangue, CoG700-1.25M, CoG700-1.50M and CoG700-1.75M.

    Table  1.   Microwave absorption performance of some reported absorbent systems.

    Absorbent
    systems
    RLmin
    (dB)
    Matching
    frequency
    (GHz)
    EAB
    (GHz)
    Coating
    thickness
    (mm)
    Ref.
    Co@C-700−17.014.12.72.627
    Ni0.8Co0.2@C−27.05.73.55.028
    Ce1.2MM0.8Co17−32.07.42.41.829
    Co/NGN−38.511.53.62.530
    C/Co-600−40.08.44.02.831
    Co/C@V2O3−40.115.24.61.519
    CoNi@(CoO-NiO)−24.517.83.01.732
    CoCB800−20.616.13.81.333
    CoG700−35.216.24.31.5This work
    下载: 导出CSV
  • [1] YAO Yong-gang, WANG Wen-long, GE Zhi, et al. Hydration study and characteristic analysis of a sulfoaluminate high-performance cementitious material made with industrial solid wastes[J]. Cement and Concrete Composites,2020,112:103687. doi: 10.1016/j.cemconcomp.2020.103687
    [2] Alieh Saedi, Ahmad Jamshidi Zanjani, Ahmad Khodadadi Darban. A review on different methods of activating tailings to improve their cementitious property as cemented paste and reusability[J]. Journal of Environmental Management,2020,270:110881. doi: 10.1016/j.jenvman.2020.110881
    [3] QI Jiang-tao, YAN Wen, CHEN Zhe, et al. Preparation and characterization of microporous mullite-corundum refractory aggregates with high strength and closed porosity[J]. Ceramics International,2020,46(6):8274-8280. doi: 10.1016/j.ceramint.2019.12.056
    [4] Kuz'Min M P, Larionov L M, Kondratiev V V, et al. Use of the burnt rock of coal deposits slag heaps in the concrete products manufacturing[J]. Construction and Building Materials,2018,179:117-124. doi: 10.1016/j.conbuildmat.2018.05.222
    [5] ZHANG Yu-zhuo, WANG Qing-he, ZHOU Mei, et al. Mechanical properties of concrete with coarse spontaneous combustion gangue aggregate (SCGA): Experimental investigation and prediction methodology[J]. Construction and Building Materials,2020,255:119337. doi: 10.1016/j.conbuildmat.2020.119337
    [6] LI Dan, WU Dai-she, XU Fei-gao, et al. Assessment of soil and maize contamination by TE near a coal gangue–fired thermal power plant. Environ[J]. Environmental Monitoring and Assessment,2020,192(8):541. doi: 10.1007/s10661-020-08510-z
    [7] Eldeeb A B, Brichkin V N, Bertau M, et al. Solid state and phase transformation mechanism of kaolin sintered with limestone for alumina extraction[J]. Applied Clay Science,2020,196:105771. doi: 10.1016/j.clay.2020.105771
    [8] CHEN Zong-ping, XU Chuan, MA Chao-qun, et al. Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding[J]. Advanced Materials,2013,25(9):1296-1300. doi: 10.1002/adma.201204196
    [9] WANG Xi-xi, SHU Jin-cheng, CAO Wen-qiang, et al. Eco-mimetic nanoarchitecture for green EMI shielding[J]. Chemical Engineering Journal,2019,369:1068-1077. doi: 10.1016/j.cej.2019.03.164
    [10] CAO Mao-sheng, SHU Jin-cheng, WANG Xi-xi, et al. Electronic structure and electromagnetic properties for 2D electromagnetic functional materials in gigahertz frequency[J]. Annalen der Physik,2019,531(4):1800390. doi: 10.1002/andp.201800390
    [11] WANG Gui-zhen, GAO Zhe, TANG Shi-wei, et al. Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition[J]. ACS Nano,2012,6(12):11009-11017. doi: 10.1021/nn304630h
    [12] CHEN Yi-Hua, HUANG Zi-han, LU Ming-ming, et al. 3D Fe3O4 nanocrystals decorating carbon nanotubes to tune electromagnetic properties and enhance microwave absorption capacity[J]. Journal of Materials Chemistry A,2015,3(24):12621-12625. doi: 10.1039/C5TA02782A
    [13] Faisal Shahzad, Mohamed Alhabeb, Christine B Hatter, et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes)[J]. Science,2016,353(6304):1137-1140. doi: 10.1126/science.aag2421
    [14] CAO Mao-sheng, WANG Xi-xi, CAO Wen-qiang, et al. Thermally driven transport and relaxation switching self-powered electromagnetic energy conversion[J]. Small,2018,14(29):1800987. doi: 10.1002/smll.201800987
    [15] WU Zheng-chen, PEI Ke, XING Lin-Shen, et al. Enhanced microwave absorption performance from magnetic coupling of magnetic nanoparticles suspended within hierarchically tubular composite[J]. Advanced Functional Materials,2019,29(28):1901448. doi: 10.1002/adfm.201901448
    [16] XU Xue-fei, WANG Gui-long, WAN Geng-ping, et al. Magnetic Ni/graphene connected with conductive carbon nano-onions or nanotubes by atomic layer deposition for lightweight and low-frequency microwave absorption[J]. Chemical Engineering Journal,2020,382:122980. doi: 10.1016/j.cej.2019.122980
    [17] CHEN Chin-Yi, LAN G S, TUAN W H. Preparation of mullite by the reaction sintering of kaolinite and alumina[J]. Journal of the European Ceramic Society,2000,20(14):2519-2525.
    [18] Hartmut Schneider, Jürgen Schreuer, Bernd Hildmann. Structure and properties of mullite-a review[J]. Journal of the European Ceramic Society,2008,28(2):329-344. doi: 10.1016/j.jeurceramsoc.2007.03.017
    [19] ZHOU Chen-hui, WU Chen, LIU Dong, et al. Metal-organic framework derived hierarchical Co/C@V2O3 hollow spheres as a thin, lightweight and high-efficiency electromagnetic wave absorber[J]. Chemical Engineering Journal,2019,25(9):2234-2241.
    [20] Acharya Jiwan, Gnana Sundara Raj Balasubramaniam, Hoon Ko Tae, et al. Facile one pot sonochemical synthesis of CoFe2O4/MWCNTs hybrids with well-dispersed MWCNTs for asymmetric hybrid supercapacitor applications[J]. International Journal of Hydrogen Energy,2020,45(4):3073-3085. doi: 10.1016/j.ijhydene.2019.11.169
    [21] SONG Zhi-ming, LIU Jie-yuan, SUN Xin, et al. Alginate-templated synthesis of CoFe/carbon fiber composite and the effect of hierarchically porous structure on electromagnetic wave absorption performance[J]. Carbon,2019,151:36-45. doi: 10.1016/j.carbon.2019.05.025
    [22] Shanmugam Yuvaraj, LIN Fan-yuan, CHANG Tsong-huei, et al. Thermal decomposition of metal nitrates in air and hydrogen environments[J]. Journal of Physical Chemistry B,2003,107(4):1044-1047. doi: 10.1021/jp026961c
    [23] ZONG Pei-jie, JING Yuan, TIAN Yuan-yu, et al. Pyrolysis behavior and product distributions of biomass six group components: Starch, cellulose, hemicellulose, lignin, protein and oil[J]. Energy Conversion and Management,2020,216:112777. doi: 10.1016/j.enconman.2020.112777
    [24] WU Jiang-bin, MIAO Ling-lin, CONG Xin, et al. Raman spectroscopy of graphene-based materials and its applications in related devices[J]. Chemical Society Reviews,2018,47(5):1822-1873. doi: 10.1039/C6CS00915H
    [25] CAO Mao-sheng, WANG Xi-xi, CAO Wen-qiang, et al. Thermally driven transport and relaxation switching self-powered electromagnetic energy conversion[J]. Small,2018,14(29):1800987. doi: 10.1002/smll.201800987
    [26] HUANG Da-wei, LI Yan-hui, YANG Ya-ping, et al. Soft magnetic Co-based Co–Fe–B–Si–P bulk metallic glasses with high saturation magnetic flux density of over 1.2 T[J]. Journal of Alloys and Compounds,2020,843:154862. doi: 10.1016/j.jallcom.2020.154862
    [27] ZHAO Huan0qin, CHENG Yan, ZHU Zhang, et al. Rational design of core-shell Co@C nanotubes towards lightweight and high-efficiency microwave absorption[J]. Composites Part B Engineering,2020,196:108119. doi: 10.1016/j.compositesb.2020.108119
    [28] WANG Lei, HUANG Meng-qiu, YU Xue-feng, et al. MOF-derived Ni1−xCox@carbon with tunable nano–microstructure as lightweight and highly efficient electromagnetic wave absorber[J]. Nano-Micro Letters,2020,12(1):150. doi: 10.1007/s40820-020-00488-0
    [29] LIU Yong-he, PAN Shun-kang, CHENG Li-chun, et al. Effect of Misch-metal content on microwave absorption property of Ce2Co17 alloy[J]. Journal of Materials Science Materials in Electronics,2020,31(3):11204-11210.
    [30] Bateer Buhe, XIE-Ying, TIAN Chun-gui, et al. Cobalt nanoparticles decorated on nitrogen-doped grapheme as excellent electromagnetic wave absorbent in Ku-band[J]. Journal of Materials Science Materials in Electronics,2020,31(15):12044-12055. doi: 10.1007/s10854-020-03686-z
    [31] PENG Cheng-lei, ZHANG Ya-nan, ZHANG Bao-shan. MOF-derived jujube pit shaped C/Co composites with hierarchical structure for electromagnetic absorption[J]. Journal of Alloys and Compounds,2020,826:154203. doi: 10.1016/j.jallcom.2020.154203
    [32] NI Cui, WU Dan, XIE Xiu-bo, et al. Microwave absorption properties of microporous CoNi@(NiO-CoO) nanoparticles through dealloying[J]. Journal of magnetism and magnetic materials,2020,503:166631. doi: 10.1016/j.jmmm.2020.166631
    [33] LI Guo-min, WANG Lian-cheng, LI Wan-xi, et al. Fe, Co or Ni loaded porous activated carbon balls as lightweight microwave absorbents[J]. Chemphyschem A European Journal of Chemical Physics & Physical Chemistry,2016,16(16):3458-3467.
    [34] LI Guo-min, WANG Lian-cheng, LI Wan-xi, et al. Mesoporous Fe/C and core-shell Fe-Fe3C@C composites as efficient microwave absorbents[J]. Microporous and Mesoporous Materials,2015,211:97-104. doi: 10.1016/j.micromeso.2015.02.054
    [35] WEN Fu-sheng, ZHANG Fang, LIU Zhong-yuan. Investigation on Microwave absorption properties for multiwalled carbon nanotubes/Fe/Co/Ni nanopowders as lightweight absorbers[J]. Journal of Physical Chemistry C,2011,115(29):14025-14030. doi: 10.1021/jp202078p
    [36] YANG Hui-jing, CAO Mao-sheng, WANG Xi-xi, et al. Graphene nanohybrids: excellent electromagnetic properties for the absorbing and shielding of electromagnetic waves[J]. Journal of Materials Chemistry C,2018,6(17):4586-4602. doi: 10.1039/C7TC05869A
    [37] SUN Gen-ban, DONG Bing-xiang, CAO Min-hua, et al. Hierarchical dendrite-like magnetic materials of Fe3O4, γ-Fe2O3, and Fe with high performance of microwave absorption[J]. Chemistry of Materials,2011,23(6):1587-1593. doi: 10.1021/cm103441u
    [38] DENG Long-jiang, HAN Man-gui. Microware absorbing performances of multiwalled carbon nanotube composites with negative permeability[J]. Applied Physics Letters,2007,91(2):023119. doi: 10.1063/1.2755875
    [39] ZHANG Min, YANG Hui-jing, LI Yong, et al. Cobalt doping of bismuth ferrite for matched dielectric and magnetic loss[J]. Applied Physics Letters,2019,115(21):212902. doi: 10.1063/1.5134741
    [40] LIU Wei, TAN Shu-juan, YANG Zhi-hong, et al. Enhanced low-frequency electromagnetic properties of MOF-derived cobalt through interface design[J]. ACS Applied Materials and Interfaces,2018,10(37):31610-31622. doi: 10.1021/acsami.8b10685
    [41] WANG Kan, WAN Geng-ping, WANG Gui-long, et al. The construction of carbon-coated Fe3O4 yolk-shell nanocomposites based on volume shrinkage from the release of oxygen anions for wide-band electromagnetic wave absorption[J]. Journal of Colloid and Interface Science,2018,511:307-317. doi: 10.1016/j.jcis.2017.10.018
    [42] HE Na, HE Zhi-dong, LIU Lin, et al. Ni2+ guided phase/structure evolution and ultra-wide bandwidth microwave absorption of CoxNi1-x alloy hollow microspheres[J]. Chemical Engineering Journal,2019,381:122743.
    [43] QUAN Bin, SHI Wen-hao, Samuel Jun Hoong Ong, et al. Defect engineering in two common types of dielectric materials for electromagnetic absorption applications[J]. Advanced Functional Materials,2019,29(28):1901236. doi: 10.1002/adfm.201901236
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  27
  • HTML全文浏览量:  15
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-01
  • 修回日期:  2020-01-01
  • 网络出版日期:  2021-06-03

目录

    /

    返回文章
    返回