留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TiC-modified CNTs as reinforcement fillers of isotropic graphite issued from mesocarbon microbeads

LIN Xiang-bao CHEN Hui WU Jing WU Zhi-gang LI Run LIU Hong-bo

林祥宝, 陈惠, 巫静, 吴志刚, 李润, 刘洪波. TiC改性碳纳米管增强中间相炭微球制备各向同性石墨[J]. 新型炭材料. doi: 10.1016/S1872-5805(21)60067-7
引用本文: 林祥宝, 陈惠, 巫静, 吴志刚, 李润, 刘洪波. TiC改性碳纳米管增强中间相炭微球制备各向同性石墨[J]. 新型炭材料. doi: 10.1016/S1872-5805(21)60067-7
LIN Xiang-bao, CHEN Hui, WU Jing, WU Zhi-gang, LI Run, LIU Hong-bo. TiC-modified CNTs as reinforcement fillers of isotropic graphite issued from mesocarbon microbeads[J]. NEW CARBON MATERIALS. doi: 10.1016/S1872-5805(21)60067-7
Citation: LIN Xiang-bao, CHEN Hui, WU Jing, WU Zhi-gang, LI Run, LIU Hong-bo. TiC-modified CNTs as reinforcement fillers of isotropic graphite issued from mesocarbon microbeads[J]. NEW CARBON MATERIALS. doi: 10.1016/S1872-5805(21)60067-7

TiC改性碳纳米管增强中间相炭微球制备各向同性石墨

doi: 10.1016/S1872-5805(21)60067-7
基金项目: 国家科技部“十三五”国家重点研发计划重点专项“(2017YF0310905);国家自然科学基金(51402101);湖南省科技重大专项项目(2018GK4012,2018GK1030)

TiC-modified CNTs as reinforcement fillers of isotropic graphite issued from mesocarbon microbeads

More Information
  • 摘要: 采用无压放电等离子烧结技术,用纳米TiC改性多壁碳纳米管(MWCNTs),将纳米TiC改性后的碳纳米管(T-CNTs)掺杂到中间相炭微球(MCMB)中以制备高性能的各向同性石墨材料。利用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微(TEM)等对T-CNTs和制备的石墨材料结构进行表征;并采用万能试验机、激光导热仪和热膨胀系数仪测试了制备石墨材料的力学性能和热学性能。结果表明,纳米TiC成功的附着在CNTs的表面。与未添加T-CNTs的各向同性石墨相比,T-CNTs/MCMB各向同性石墨材料其力学强度有显著的提高,材料的抗折强度提高了70%,石墨化度提高10%,热学性能也有不同程度的提高。
  • Figure  1.  XRD patterns of CNTs and T-CNTs.

    Figure  2.  TEM images of T-CNTs. (a) Local morphology of T-CNTs; (b) Partial enlargement of TiC nanoblocks on T-CNTs; (c) Partial enlargement of TiC nanolayers on T-CNTs. The illustrations in (b) and (c) are the EDS spectra at the region illustrated by the red arrows.

    Figure  3.  TG curves of CNTs and T-CNTs in air.

    Figure  4.  Effect of the T-CNT content on the properties of composites; (a) The bulk density and volume shrinkage curves; (b) The open porosity of the composites; (c) The flexural strength of composites and (d) The stress-strain curves of composites.

    Figure  5.  Effect of the T-CNT content on thermal diffusivity and thermal conductivity of composites.

    Figure  6.  XRD patterns of different CNT/MCMB graphite samples after graphitization.

    Figure  7.  (a) XRD patterns of different T-CNT/MCMB graphite samples after graphitization; (b) the partial enlarged view of XRD.

    Figure  8.  SEM images of the composite cross section. (a) Sectional morphology of MCMB sample; (b) Cross-sectional morphology of samples with 0.40% T-CNTs added; (c) Holes formed by the detachment of particles when they are broken (the dotted line in a); (d) Smooth cleavage surface.

    Figure  9.  SEM images of the interface with T-CNTs. (a) SEM image of T-CNTs to prevent interparticle breaks; (b) A partial enlarged view of Fig. a; (c, d) EDS mapping in the dotted line in Fig. b; (e) Particles in the fracture; (f) The area labeled 2 in Fig. e is partially enlarged.

    Table  1.   Physical parameters of MCMB.

    D50(µm)TI(wt%)QI(wt%)Volatiles(wt%)Ash(wt%)
    1299.2096.307.680.25
    *TI: Toluene insolubles.
    *QI: Quinoline insolubles.
    下载: 导出CSV

    Table  2.   Element composition of T-CNTs.

    ElementCOTi
    Atomic (%)91.126.342.54
    下载: 导出CSV

    Table  3.   The combination properties of different samples.

    SampleDensity
    (g·cm−3)
    Volume
    shrinkage (%)
    Open
    porosity (%)
    Flexural
    strength (MPa)
    MCMB1.79632.8614.5614.29
    MCMB with
    0.40% CNTs
    1.82734.3911.5919.46
    MCMB with
    0.40% T-CNTs
    1.84835.988.4824.58
    下载: 导出CSV

    Table  4.   CTE and isotropic ratios of graphite samples with different T-CNTs content.

    SampleCTE (10−6/K)Isotropy ratio
    AxialRadial
    MCMB5.485.131.07
    MCMB with 0.25% T-CNTs5.084.931.03
    MCMB with 0.40% T-CNTs5.155.051.02
    下载: 导出CSV

    Table  5.   Degree of graphitization of CNT/MCMB graphite samples calculated by XRD results.

    Sample2θ (°)d002 (nm)Graphitization degree (%)
    MCMB26.300.338564.0
    MCMB with 0.25% CNTs26.330.338267.4
    MCMB with 0.40% CNTs26.350.337970.9
    MCMB with 0.70% CNTs26.300.338564.0
    下载: 导出CSV

    Table  6.   Degree of graphitization of T-CNT/MCMB graphite samples calculated by XRD results.

    Sample2θ/ (°)d002/ (nm)Graphitization degree/ (%)
    MCMB26.300.338564.0
    MCMB with 0.10% T-CNTs26.300338564.0
    MCMB with 0.25% T-CNTs26.340.338069.8
    MCMB with 0.40% T-CNTs26.360.337773.3
    MCMB with 0.75% T-CNTs26.380.337575.6
    下载: 导出CSV
  • [1] Yang X, Gu X H, Wang Y H. Application and research of isostatic pressing isotropic graphite[J]. Carbon,2012,149(1):24-25.
    [2] B T Kelly. Physics of Graphite[M]. London: Applied Science Publisher, 1981.
    [3] Liu M, Zhang W T, Song J L, et al. Irradiation resistance study of binderless nanopore-isotropic graphite for use in molten salt nuclear reactors[J]. Nucl Eng Des,2018,335:231-240. doi: 10.1016/j.nucengdes.2018.05.027
    [4] März B, Jolley K, Marrow T J, et al. Mesoscopic structure features in synthetic graphite[J]. Mater Des,2018,142:268-278. doi: 10.1016/j.matdes.2018.01.038
    [5] Yamada T, Matsushima Y, Kuroda M, et al. Evaluation of fracture toughness of fine-grained isotropic graphites for HTGR[J]. Nucl Eng Des,2014,271:323-326. doi: 10.1016/j.nucengdes.2013.11.055
    [6] Wang Y G, Y Korai, I Mochida. Carbon disc of high density and strength prepared from synthetic pitch-derived mesocarbon microbeads[J]. Carbon,1999,37(7):1049-1057. doi: 10.1016/S0008-6223(98)00298-X
    [7] Shen K, Huang Z H, Kang F Y, et al. Advantages of natural microcrystalline graphite filler over petroleum coke in isotropic graphite preparation[J]. Carbon,2015,90:197-206. doi: 10.1016/j.carbon.2015.03.068
    [8] Hoffmann W R, Huttinger K J. Sintering of powders of polyaromatic mesophase to high-strength isotropic carbons—I. Influence of the raw material and sintering conditions on the properties of the carbon materials[J]. Carbon,1994,32(6):1087-1103. doi: 10.1016/0008-6223(94)90218-6
    [9] Norfolk C, Mukasyan A, Hayes D, et al. Processing of mesocarbon microbeads to high-performance materials: Part I. Studies towards the sintering mechanism[J]. Carbon,2004,42(1):11-19. doi: 10.1016/j.carbon.2003.09.020
    [10] Wen K Y, Marrow T J, Marsden B J. The microstructure of nuclear graphite binders[J]. Carbon,2008,46(1):62-71. doi: 10.1016/j.carbon.2007.10.025
    [11] Jones A N, Hall G N, Joyce M, et al. Microstructural characterisation of nuclear grade graphite[J]. J Nucl Mater,2008,381(1-2): 152-157. doi: 10.1016/j.jnucmat.2008.07.038
    [12] Kane J, Karthik C, Butt D P, et al. Microstructural characterization and pore structure analysis of nuclear graphite[J]. J Nucl Mater,2011,415(2):189-197. doi: 10.1016/j.jnucmat.2011.05.053
    [13] Karthik C, Kane J, Butt D P, et al. Microstructural Characterization of Next Generation Nuclear Graphites[J]. Microsc Microanal,2012,18(2):272-278. doi: 10.1017/S1431927611012360
    [14] Xie W J, Liu H B, Liu J P, et al. Effect of raw material types on properties of isostatic graphite[J]. Carbon technology,2013,4:27-31.
    [15] Lu X R, Wang C Y, Fan Q M. The influence of characteristics of ultra fine MCMB powders and molding conditions on the properties of sintered bodies[J]. New Carbon Mater,2004,19(2):109-113.
    [16] Zhong Q, Xie G, Yu X H, et al. Research on High Purity Graphite Production Technology[J]. Carbon technology,2012,4:13-16.
    [17] Liu H B, Qin D J, Chen H, et al. Preparation of High Density and High Strength Graphite by Coal Pitch Modified Mesophase Carbon Microspheres[J]. Journal of Hunan University,2018,6:40-44.
    [18] Hou D D, Chen H, Ding L, et al. Structure and Properties of Graphite Materials Prepared by Medium Temperature Pitch Modified MCMB[J]. Carbon technology,2017,5:35-39.
    [19] Ding L, Chen H, Hou D D, et al. Effect of carbonization temperature on properties of mesophase carbon microspheres for preparation of high density and high strength carbon materials[J]. Carbon technology,2018,37(3):45-55.
    [20] Cheng Y L, Li T H, Fang C Q, et al. In situ preparation and mechanical properties of CNTs/MCMBs composites[J]. Composites, Part B,2013,47:290-297. doi: 10.1016/j.compositesb.2012.11.009
    [21] Shen K, Zhang Q, Huang Z H, et al. Interface enhancement of carbon nanotube/mesocarbon microbead isotropic composites[J]. Composites, Part A,2014,56:44-50. doi: 10.1016/j.compositesa.2013.09.008
    [22] García-Rosales C, López-Galilea I, Ordás N, et al. Ti-doped isotropic graphite: A promising armour material for plasma-facing components[J]. J Nucl Mater,2009,386-388:801-804. doi: 10.1016/j.jnucmat.2008.12.224
    [23] López-Galilea I, Ordás N, García- Rosales C, et al. Improvement of thermal shock resistance of isotropic graphite by Ti-doping[J]. J Nucl Mater,S2009,386-388:805-808. doi: 10.1016/j.jnucmat.2008.12.227
    [24] Saba F, Sajjadi S A, Sabzevar M H, et al. Formation mechanism of nano titanium carbide on multi-walled carbon nanotube and influence of the nanocarbides on the load-bearing contribution of the nanotubes inner-walls in aluminum-matrix composites[J]. Carbon,2017,115:720-729. doi: 10.1016/j.carbon.2017.01.062
    [25] Saba F, Sabzevar M H, Sajjadi S A, et al. The effect of TiC: CNT mixing ratio and CNT content on the mechanical and tribological behaviors of TiC modified CNT-reinforced Al-matrix nanocomposites[J]. Powder Technol,2018,331:107-120. doi: 10.1016/j.powtec.2018.03.023
    [26] Saba F, Zhang F M, Sajjadi S A, et al. Pulsed current field assisted surface modification of carbon nanotubes with nanocrystalline titanium carbide[J]. Carbon,2016,101:261-271. doi: 10.1016/j.carbon.2016.02.012
    [27] Saba F, Sajjadi S A, Sabzevar M H, et al. TiC-modified carbon nanotubes, TiC nanotubes and TiC nanorods: Synthesis and characterization[J]. Ceram Int,2018,44:7949-7954. doi: 10.1016/j.ceramint.2018.01.233
    [28] Taguchi T, Yamamoto H, Shamoto S. Synthesis and characterization of single-phase TiC nanotubes, TiC nanowires, and carbon nanotubes equipped with TiC nanoparticles[J]. J Phys Chem C,2007,111(51):18888-18891. doi: 10.1021/jp0756909
    [29] Zhu X K, Zhao K Y, Cheng B C, et al. Synthesis of nanocrystalline TiC powder by mechanical alloying[J]. Mater Sci Eng, C,2001,16:103-105. doi: 10.1016/S0928-4931(01)00283-1
    [30] Li C Y, Chou T W. Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces[J]. Compos Sci Technol,2003,63:1517-1524. doi: 10.1016/S0266-3538(03)00072-1
    [31] Gherrab M, Garnier V, Gavarini S, et al. Oxidation behavior of nano-scaled and micron-scaled TiC powders under air[J]. Int J Refract Met Hard Mater,2013,41:590-596. doi: 10.1016/j.ijrmhm.2013.07.012
    [32] Deng C F, Wang D Z, Zhang X X, et al. Processing and properties of carbon nanotubes reinforced aluminum composites[J]. Mater Sci Eng, A,2007,444(1-2):138-145. doi: 10.1016/j.msea.2006.08.057
    [33] Ray H Baughman, Anvar A Zakhidov, Walt A de Heer. Carbon nanotubes—the route toward applications[J]. Science,2002,297:787-792. doi: 10.1126/science.1060928
    [34] Zhang F Q, Huang Q Z, Huang B Y, et al. Relationship between Thermal Conductivity and Graphitization Degree of a Chopped Carbon Fiber/Resin-derived Carbon Composite[J]. Materials Engineering,2003,9:18-21.
    [35] Ōya A, Ōtani S. Catalytic graphitization of carbons by various metals[J]. Carbon,1979,17:131-137. doi: 10.1016/0008-6223(79)90020-4
  • 加载中
图(9) / 表(6)
计量
  • 文章访问数:  71
  • HTML全文浏览量:  18
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-20
  • 修回日期:  2020-05-19
  • 网络出版日期:  2021-06-08

目录

    /

    返回文章
    返回