留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Recent advances in carbon-supported iron group electrocatalysts for the oxygen reduction reaction

LI Ping WANG Huan-lei

李平, 王焕磊. 炭负载铁系元素催化剂在氧还原反应中的应用研究进展. 新型炭材料, 2021, 36(4): 665-682. doi: 10.1016/S1872-5805(21)60072-0
引用本文: 李平, 王焕磊. 炭负载铁系元素催化剂在氧还原反应中的应用研究进展. 新型炭材料, 2021, 36(4): 665-682. doi: 10.1016/S1872-5805(21)60072-0
LI Ping, WANG Huan-lei. Recent advances in carbon-supported iron group electrocatalysts for the oxygen reduction reaction. New Carbon Mater., 2021, 36(4): 665-682. doi: 10.1016/S1872-5805(21)60072-0
Citation: LI Ping, WANG Huan-lei. Recent advances in carbon-supported iron group electrocatalysts for the oxygen reduction reaction. New Carbon Mater., 2021, 36(4): 665-682. doi: 10.1016/S1872-5805(21)60072-0

炭负载铁系元素催化剂在氧还原反应中的应用研究进展

doi: 10.1016/S1872-5805(21)60072-0
基金项目: 山东省自然科学基金(ZR2020ME038);山东省重点研发计划(公益类科技攻关)(2019GGX102038);中央高校基本科研业务费专项(201941010, 201822008);青岛市应用基础研究计划项目(19-6-2-77-cg);国家自然科学基金(21471139)
详细信息
    通讯作者:

    王焕磊,教授. E-mail:huanleiwang@ouc.edu.cn

  • 中图分类号: TB33

Recent advances in carbon-supported iron group electrocatalysts for the oxygen reduction reaction

Funds: Shandong Provincial Natural Science Foundation, China (No.ZR2020ME038); Shandong Provincial Key R&D Plan and the Public Welfare Special Program, China (No.2019GGX102038); Fundamental Research Funds for the Central Universities (No. 201941010 and 201822008); Qingdao City Programs for Science and Technology Plan Projects (19-6-2-77-cg); National Natural Science Foundation of China (No.21471139)
More Information
    Author Bio:

    李 平,博士研究生. E-mail:chemlipingest@163.com

    Corresponding author: WANG Huan-lei, Professor. E-mail:
  • 摘要: 金属-空气电池作为新兴的能源装置受到了人们的关注。氧还原反应(ORR)是金属-空气电池的关键电化学过程。由于氧还原反应缓慢的动力学速率和铂基ORR催化剂高昂的价格严重阻碍了金属-空气电池的规模化应用。铁系元素不但地球储量丰富而且具有多样的杂化轨道,将铁系元素引入到炭骨架中可以实现与铂相近的催化性能,非常有希望取代铂基催化剂成为商用ORR催化剂。本文根据活性位点的分类,对铁系元素基炭催化剂在ORR中的应用进行了综述,并系统总结了各中活性位点在ORR过程中的作用机理。本文在系统论述炭负载铁系元素催化剂结构和性能间构效关系的基础上,充分认识铁系元素在ORR中的作用,为今后设计具有高效ORR催化性能的廉价催化剂提供技术支撑和理论指导。
  • FIG. 777.  FIG. 777.

    FIG. 777.. 

    Figure  1.  Summary of carbon-supported iron series element catalysts in ORR, such as Fe-Nx (Reprinted with permission by copyright 2021, Willey[16]), Fe-Ox (Reprinted with permission by copyright 2020, Willey[18]), Fe-Px (Reprinted with permission by copyright 2020, ACS[19]), Ni-Nx (Reprinted with permission by copyright 2020, RSC[20]), Ni-Sx (Reprinted with permission by copyright 2018, ACS[21]), Ni NPs (Reprinted with permission by copyright 2017, Willey[22]), Ni-Ox (Reprinted with permission by copyright 2020, Springer Nature[23]), Co NPs (Reprinted with permission by copyright 2020, Willey[24]), Co-Sx (Reprinted with permission by copyright 2019, Willey[25]), Co-Px (Reprinted with permission by copyright 2019, RSC[26]), Co-Nx (Reprinted with permission by copyright 2020, Willey[27]) and Fe-Cx (Reprinted with permission by copyright 2020, Elsevier[28]).

    Figure  2.  (a) The synthesis procedure of FeNC-D0.5 (Reprinted with permission by copyright 2021, Willey[47]), (b) the energetic pathway of the ORR on Co4N@NC (Reprinted with permission by copyright 2020, Elsevier[49]), (c) the correlation between the onset potential (Uonset) and adsorption energy (Eads) of the adsorptive oxygen atoms on CoN4−xCx, (d) the Bader charge transfer of the adsorptive oxygen on CoN4−xCx sites (Reprinted with permission by copyright 2020, Willey[27]), (e) free energy diagram for O2 reduction on Ni–N2 edge defect (Reprinted with permission by copyright 2012, ACS[50]) and (f) free energy diagram for ORR on three-coordinated NiN3, NiN2C, NiNC2, NiC3 at the equilibrium potential (U=0.402 V) in alkaline conditions (Reprinted with permission by copyright 2020, RSC[51]).

    Figure  3.  (a) Schematic illustration of the synthesis for Fe2P/NPC, (b) rotating ring disk electrode (RRDE) voltammograms of Fe2P/NPC, NPC, and Pt/C in O2-saturated 0.10 mol L−1 KOH solution (Reprinted with permission by copyright 2020, Elsevier[60]), (c) high resolution-transmission electron microscope (HR-TEM) images of Co2P/CoNPC, (d) the linear sweep voltammetry (LSV) curves of Co2P/CoNPC (Reprinted with permission by copyright 2020, Willey[61]) and (e) free energy diagrams for ORR at different electrode potentials on CoP (211) surface through the oxygen associative mechanism (Reprinted with permission by copyright 2018, Willey[62]).

    Figure  4.  (a) Schematic illustration for the synthesis of NP-Co3O4/CC, (b) polarization curves of various catalysts, (c) the ORR stability evaluation of NP-Co3O4/CC and Pt/C (Reprinted with permission by copyright 2020, Elsevier[76]) and (d) schematic illustration of possible ORR mechanisms using Co3O4@NGC@MP-TiO2 catalyst (Reprinted with permission by copyright 2021, Elsevier[77]).

    Figure  5.  (a) Schematic illustration for the synthesis of CoS NWs@NSC (Reprinted with permission by copyright 2018, Willey[81]) and (b) ORR activity predictions of NiSx based on DFT calculations (Reprinted with permission by copyright 2017, Elsevier[82]).

    Figure  6.  (a) Schematic illustration of the preparation of Co@SNHC (Reprinted with permission by copyright 2019, RSC[89]) , (b) rotating disk electrode (RDE) polarization curves of Ni@N-CNCs, N-CNCs, and Ni/N-CNCs and (c) chronoamperometric response of Pt/C, Ni@N-CNCs, and N-CNCs at −0.4 V and 1600 r/min (Reprinted with permission by copyright 2017, Willey[22]).

    Figure  7.  (a) Schematic illustration of the preparation of Fe3C/C-700 (Reprinted with permission by copyright 2014, Willy[92]), (b) the linear correlation of adsorption energies for intermediates during ORR, (c) the energetic pathway of the ORR on Fe3C@MHNFs and (d) polarization curves of MHNFs, Fe3C@SNFs, Fe3C@MHNFs and commercial Pt/C (Reprinted with permission by copyright 2020, RSC[93]).

    Figure  8.  (a) XRD patterns of the Fe2O3@NC-450 (Reprinted with permission by copyright 2020, RSC[95]), (b) high-angle annular dark field-scanning transmission election microscope (HAADF-STEM) images of FeSA/FeONC/NSC, (c) Fe K-edge k3-weighted Fourier transform (FT) spectra of FeSA/FeONC/NSC, Fe2O3 and Fe foil (Reprinted with permission by copyright 2020, RSC[96]) and (d) schematic illustration of the preparation of Ni/NiO/NiCo2O4/N-CNT-As (Reprinted with permission by copyright 2016, RSC[97]).

  • [1] Zhou M, Wang H, Guo S. Towards high-efficiency nanoelectrocatalysts for oxygen reduction through engineering advanced carbon nanomaterials[J]. Chemical Society Reviews,2016,45(5):1273-1307. doi: 10.1039/C5CS00414D
    [2] Li J, Hou P, Liu C. Heteroatom-doped carbon nanotube and graphene-based electrocatalysts for oxygen reduction reaction[J]. Small,2017,13(45):1702002. doi: 10.1002/smll.201702002
    [3] Zhang J, Zhang J, He F, et al. Defect and doping Co-engineered non-metal nanocarbon ORR electrocatalyst[J]. Nano-Micro Letters,2021,13(1):65. doi: 10.1007/s40820-020-00579-y
    [4] Yang L, Shui J, Lei D, et al. Carbon-based metal-free ORR electrocatalysts for fuel cells: Past, present, and future[J]. Advanced Materials,2019,31(13):1804799. doi: 10.1002/adma.201804799
    [5] Mamtani K, Jain D, Dogu D, et al. Insights into oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) active sites for nitrogen-doped carbon nanostructures (CNx) in acidic media[J]. Applied Catalysis B: Environmental,2018(220):88-97.
    [6] Ding D, Shen K, Chen X, et al. Multi-level architecture optimization of MOF-templated Co-based nanoparticles embedded in hollow N-doped carbon polyhedra for efficient OER and ORR[J]. ACS Catalysis,2018,8(9):7879-7888. doi: 10.1021/acscatal.8b02504
    [7] Blaser H U. Catalysis without Precious Metals[M]. Edited by R Morris Bullock[J]. ChemCatChem,2011,3(4):780-780. doi: 10.1002/cctc.201000430
    [8] Chirik P J. Carbon–carbon bond formation in a weak ligand field: Leveraging open-shell first-row transition-metal catalysts[J]. Angewandte Chemie International Edition,2017,56(19):5170-5181. doi: 10.1002/anie.201611959
    [9] Schröder D, Shaik S, Schwarz H. Two-state reactivity as a new concept in organometallic chemistry[J]. Accounts of Chemical Research,2000,33(3):139-145. doi: 10.1021/ar990028j
    [10] Jin J, Yin J, Liu H, et al. Transition metal (Fe, Co and Ni)−carbide−nitride (M−C−N) nanocatalysts: Structure and electrocatalytic applications[J]. ChemCatChem,2019,11(12):2780-2792. doi: 10.1002/cctc.201900570
    [11] Wang Y, Li J, Wei Z. Transition-metal-oxide-based catalysts for the oxygen reduction reaction[J]. Journal of Materials Chemistry A,2018,6(18):8194-8209. doi: 10.1039/C8TA01321G
    [12] Liang Z, Zheng H, Cao R. Recent advances in Co-based electrocatalysts for the oxygen reduction reaction[J]. Sustainable Energy & Fuels,2020,4(8):3848-3870.
    [13] Xu Z, Zhao H, Liang J, et al. Noble-metal-free electrospun nanomaterials as electrocatalysts for oxygen reduction reaction[J]. Materials Today Physics,2020(15):100280.
    [14] Li Y, Chen B, Duan X, et al. Atomically dispersed Fe-N-P-C complex electrocatalysts for superior oxygen reduction[J]. Applied Catalysis B: Environmental,2019(249):306-315.
    [15] Li W, Chen J, Xiao Z, et al. MoS2/graphene/carbonized melamine foam composite catalysts for the hydrogen evolution reaction[J]. New Carbon Materials,2020,35(5):540-546. doi: 10.1016/S1872-5805(20)60507-8
    [16] Gong X, Zhu J, Li J, et al. Self-templated hierarchically porous carbon nanorods embedded with atomic Fe-N4 active sites as efficient oxygen reduction electrocatalysts in Zn-air batteries[J]. Advanced Functional Materials,2021,31(8):2008085. doi: 10.1002/adfm.202008085
    [17] Chen J, Li H, Fan C, et al. Dual single-atomic Ni-N4 and Fe-N4 sites constructing janus hollow graphene for selective oxygen electrocatalysis[J]. Advanced Materials,2020:e2003134.
    [18] Wang B, Ye Y, Xu L, et al. Space-confined yolk-shell construction of Fe3O4 nanoparticles inside N-doped hollow mesoporous carbon spheres as bifunctional electrocatalysts for long-term rechargeable zinc–air batteries[J]. Advanced Functional Materials,2020,30(51):2005834. doi: 10.1002/adfm.202005834
    [19] Singh K P, Bae E J, Yu J S. Fe-P: A new class of electroactive catalyst for oxygen reduction reaction[J]. Journal of the American Chemical Society,2015,137(9):3165-3168. doi: 10.1021/ja511759u
    [20] Cai Z, Du P, Liang W, et al. Single-atom-sized Ni–N4 sites anchored in three-dimensional hierarchical carbon nanostructures for the oxygen reduction reaction[J]. Journal of Materials Chemistry A,2020,8(30):15012-15022. doi: 10.1039/D0TA05326K
    [21] Cao Y, Meng Y, Huang S, et al. Nitrogen-, oxygen- and sulfur-doped carbon-encapsulated Ni3S2 and NiS core–shell architectures: bifunctional electrocatalysts for hydrogen evolution and oxygen reduction reactions[J]. ACS Sustainable Chemistry & Engineering,2018,6(11):15582-15590.
    [22] Li B, Nam H, Zhao J, et al. Nanoreactor of nickel-containing carbon–shells as oxygen reduction catalyst[J]. Advanced Materials,2017,29(7):1605083. doi: 10.1002/adma.201605083
    [23] Liu P, Ran J, Xia B, et al. Bifunctional oxygen electrocatalyst of mesoporous Ni/NiO nanosheets for flexible rechargeable Zn–air batteries[J]. Nano-Micro Letters,2020,12(1):68. doi: 10.1007/s40820-020-0406-6
    [24] Liu T, Mou J, Wu Z, et al. A facile and scalable strategy for fabrication of superior bifunctional freestanding air electrodes for flexible zinc–air batteries[J]. Advanced Functional Materials,2020,30(36):2003407. doi: 10.1002/adfm.202003407
    [25] Guo X, Zhang W, Zhang D, et al. Submicron Co9S8/CoS/carbon spheres derived from bacteria for the electrocatalytic oxygen reduction reaction[J]. ChemElectroChem,2019,6(17):4571-4575. doi: 10.1002/celc.201901266
    [26] Zhang Y, Tao H, Chen Z, et al. In situ grown cobalt phosphide (CoP) on perovskite nanofibers as an optimized trifunctional electrocatalyst for Zn–air batteries and overall water splitting[J]. Journal of Materials Chemistry A,2019,7(46):26607-26617. doi: 10.1039/C9TA08936E
    [27] Yang Q, Jia Y, Wei F, et al. Understanding the activity of Co-N4−xCx in atomic metal catalysts for oxygen reduction catalysis[J]. Angewandte Chemie International Edition,2020,59(15):6122-6127. doi: 10.1002/anie.202000324
    [28] Wu M, Xie J, Liu A, et al. Iron carbide/nitrogen-doped carbon core-shell nanostrctures: Solution-free synthesis and superior oxygen reduction performance[J]. Journal of Colloid and Interface Science,2020(566):194-201.
    [29] Borghei M, Lehtonen J, Liu L, et al. Advanced biomass-derived electrocatalysts for the oxygen reduction reaction[J]. Advanced Materials,2018,30(24):1870171. doi: 10.1002/adma.201870171
    [30] Fukuzumi S, Lee Y-M, Nam W. Mechanisms of two-electron versus four-electron reduction of dioxygen catalyzed by earth-abundant metal complexes[J]. ChemCatChem,2018,10(1):9-28. doi: 10.1002/cctc.201701064
    [31] Ouyang D, Hu L, Wang G, et al. A review of biomass-derived graphene and graphene-like carbons for electrochemical energy storage and conversion[J]. New Carbon Materials,2021,36(2):350-372. doi: 10.1016/S1872-5805(21)60024-0
    [32] Singh S K, Takeyasu K, Nakamura J. Active sites and mechanism of oxygen reduction reaction electrocatalysis on nitrogen-doped carbon materials[J]. Advanced Materials,2019,31(13):e1804297. doi: 10.1002/adma.201804297
    [33] Ye X, Hu L, Liu M, et al. Improved oxygen reduction performance of a N, S co-doped graphene-like carbon prepared by a simple carbon bath method[J]. New Carbon Materials,2020,35(5):531-539. doi: 10.1016/S1872-5805(20)60506-6
    [34] Ding Y, Kopold P, Hahn K, et al. Facile solid-state growth of 3D well-interconnected nitrogen-rich carbon nanotube–graphene hybrid architectures for lithium–sulfur batteries[J]. Advanced Functional Materials,2016,26(7):1112-1119. doi: 10.1002/adfm.201504294
    [35] Chen Y, Wang J, Liu H, et al. Nitrogen doping effects on carbon nanotubes and the origin of the enhanced electrocatalytic activity of supported Pt for proton-exchange membrane fuel cells[J]. The Journal of Physical Chemistry C,2011,115(9):3769-3776. doi: 10.1021/jp108864y
    [36] Wei P, Yu G, Naruta Y, et al. Covalent grafting of carbon nanotubes with a biomimetic heme model compound to enhance oxygen reduction reactions[J]. Angewandte Chemie International Edition,2014,53(26):6659-6663. doi: 10.1002/anie.201403133
    [37] Shi J, Lin N, Lin H, et al. A N-doped rice husk-based porous carbon as an electrocatalyst for the oxygen reduction reaction[J]. New Carbon Materials,2020,35(4):401-409. doi: 10.1016/S1872-5805(20)60497-8
    [38] Chen P, Xiao T, Qian Y, et al. A nitrogen-doped graphene/carbon nanotube nanocomposite with synergistically enhanced electrochemical activity[J]. Advanced Materials,2013,25(23):3192-3196. doi: 10.1002/adma.201300515
    [39] Yang Z, Yang Y, Lu C, et al. A high energy density fiber-shaped supercapacitor based on zinc-cobalt bimetallic oxide nanowire forests on carbon nanotube fibers[J]. New Carbon Materials,2019,34(6):559-568. doi: 10.1016/S1872-5805(19)60031-4
    [40] Luo E, Chu Y, Liu J, et al. Pyrolyzed M–Nx catalysts for oxygen reduction reaction: progress and prospects[J]. Energy & Environmental Science,2021,14(4):2158-2185.
    [41] Du Z, Shen S, Tang Z, et al. Graphene quantum dots-based heterogeneous catalysts[J]. New Carbon Materials,2021,36(3):449-467. doi: 10.1016/S1872-5805(21)60036-7
    [42] Yan X, Jia Y, Wang K, et al. Controllable synthesis of Fe–N4 species for acidic oxygen reduction[J]. Carbon Energy,2020,2(3):452-460. doi: 10.1002/cey2.47
    [43] Liu K, Wu G, Wang G. Role of local carbon structure surrounding FeN4 sites in boosting the catalytic activity for oxygen reduction[J]. The Journal of Physical Chemistry C,2017,121(21):11319-11324. doi: 10.1021/acs.jpcc.7b00913
    [44] Zitolo A, Goellner V, Armel V, et al. Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials[J]. Nature Materials,2015,14(9):937-942. doi: 10.1038/nmat4367
    [45] He Y, Liu S, Priest C, et al. Atomically dispersed metal–nitrogen–carbon catalysts for fuel cells: Advances in catalyst design, electrode performance, and durability improvement[J]. Chemical Society Reviews,2020,49(11):3484-3524. doi: 10.1039/C9CS00903E
    [46] Li J, Zhang H, Samarakoon W, et al. Thermally driven structure and performance evolution of atomically dispersed FeN4 sites for oxygen reduction[J]. Angewandte Chemie International Edition,2019,58(52):18971-18980. doi: 10.1002/anie.201909312
    [47] Shao C, Zhuang S, Zhang H, et al. Enhancement of mass transport for oxygen reduction reaction using petal-like porous Fe-NC nanosheet[J]. Small,2021,17(6):2006178. doi: 10.1002/smll.202006178
    [48] Huo J, Lu L, Shen Z, et al. A rational synthesis of single-atom iron–nitrogen electrocatalysts for highly efficient oxygen reduction reaction[J]. Journal of Materials Chemistry A,2020,8(32):16271-16282. doi: 10.1039/D0TA04798H
    [49] Ge H, Li G, Shen J, et al. Co4N nanoparticles encapsulated in N-doped carbon box as tri-functional catalyst for Zn-air battery and overall water splitting[J]. Applied Catalysis B: Environmental,2020(275):119104.
    [50] Kattel S, Atanassov P, Kiefer B. Density functional theory study of Ni–Nx/C electrocatalyst for oxygen reduction in alkaline and acidic media[J]. The Journal of Physical Chemistry C,2012,116(33):17378-17383. doi: 10.1021/jp3044708
    [51] Liang Z, Luo M, Chen M, et al. Exploring the oxygen electrode bi-functional activity of Ni–N–C-doped graphene systems with N, C co-ordination and OH ligand effects[J]. Journal of Materials Chemistry A,2020,8(39):20453-20462. doi: 10.1039/D0TA06335E
    [52] Jasinski R. A new fuel cell cathode catalyst[J]. Nature,1964,201(4925):1212-1213. doi: 10.1038/2011212a0
    [53] Zhang J, Song L, Zhao C, et al. Co, N co-doped porous carbons as high-performance oxygen reduction electrocatalysts[J]. New Carbon Materials,2021,36(1):209-218. doi: 10.1016/S1872-5805(21)60016-1
    [54] Shu X, Chen S, Chen S, et al. Cobalt nitride embedded holey N-doped graphene as advanced bifunctional electrocatalysts for Zn-Air batteries and overall water splitting[J]. Carbon,2020(157):234-243.
    [55] Sun X, Sun S, Gu S, et al. High-performance single atom bifunctional oxygen catalysts derived from ZIF-67 superstructures[J]. Nano Energy,2019(61):245-250.
    [56] Cai Z, Lin S, Xiao J, et al. Efficient bifunctional catalytic electrodes with uniformly distributed NiN2 active sites and channels for long-lasting rechargeable zinc–air batteries[J]. Small,2020,16(32):2002518. doi: 10.1002/smll.202002518
    [57] Yang D S, Bhattacharjya D, Inamdar S, et al. Phosphorus-doped ordered mesoporous carbons with different lengths as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline media[J]. Journal of the American Chemical Society,2012,134(39):16127-16130. doi: 10.1021/ja306376s
    [58] Zhang Z, Lv R, Huang Z, et al. Carbon materials for use in the electrocatalytic hydrogen evolution reaction[J]. New Carbon Materials,2019,34(2):115 − 131.
    [59] Zhou Y, Xing Y F, Wen J, et al. Axial ligands tailoring the ORR activity of cobalt porphyrin[J]. Science Bulletin,2019,64(16):1158-1166. doi: 10.1016/j.scib.2019.07.003
    [60] Chen L, Zhang Y, Dong L, et al. Honeycomb-like 3D N-, P-codoped porous carbon anchored with ultrasmall Fe2P nanocrystals for efficient Zn-air battery[J]. Carbon,2020(158):885-892.
    [61] Liu H, Guan J, Yang S, et al. Metal–organic-framework-derived Co2P nanoparticle/multi-doped porous carbon as a trifunctional electrocatalyst[J]. Advanced Materials,2020,32(36):2003649.
    [62] Li H, Li Q, Wen P, et al. Colloidal cobalt phosphide nanocrystals as trifunctional electrocatalysts for overall water splitting powered by a zinc–air battery[J]. Advanced Materials,2018,30(9):1705796. doi: 10.1002/adma.201705796
    [63] He F, Li K, Xie G, et al. Theoretical insights on the catalytic activity and mechanism for oxygen reduction reaction at Fe and P codoped graphene[J]. Physical Chemistry Chemical Physics,2016,18(18):12675-12681. doi: 10.1039/C6CP01570K
    [64] Feng L, Liu Y, Zhao J. Fe– and Co–P4-embedded graphenes as electrocatalysts for the oxygen reduction reaction: theoretical insights[J]. Physical Chemistry Chemical Physics,2015,17(45):30687-30694. doi: 10.1039/C5CP05551B
    [65] Yang W, Liu X, Lv H, et al. Atomic Fe & FeP nanoparticles synergistically facilitate oxygen reduction reaction of hollow carbon hybrids[J]. Journal of Colloid and Interface Science,2021(583):371-375.
    [66] Li M, Liu T, Bo X, et al. Hybrid carbon nanowire networks with Fe–P bond active site for efficient oxygen/hydrogen-based electrocatalysis[J]. Nano Energy,2017(33):221-228.
    [67] Liao H, Sun Y, Dai C, et al. An electron deficiency strategy for enhancing hydrogen evolution on CoP nano-electrocatalysts[J]. Nano Energy,2018(50):273-280.
    [68] Yang F, Chen Y, Cheng G, et al. Ultrathin nitrogen-doped carbon coated with CoP for efficient hydrogen evolution[J]. ACS Catalysis,2017,7(6):3824-3831. doi: 10.1021/acscatal.7b00587
    [69] Hao Y, Xu Y, Liu W, et al. Co/CoP embedded in a hairy nitrogen-doped carbon polyhedron as an advanced tri-functional electrocatalyst[J]. Materials Horizons,2018,5(1):108-115. doi: 10.1039/C7MH00706J
    [70] Cheng Y, Liao F, Shen W, et al. Carbon cloth supported cobalt phosphide as multifunctional catalysts for efficient overall water splitting and zinc–air batteries[J]. Nanoscale,2017,9(47):18977-18982. doi: 10.1039/C7NR06859J
    [71] Wang Y, Wu M, Li J, et al. In situ growth of CoP nanoparticles anchored on (N, P) co-doped porous carbon engineered by MOFs as advanced bifunctional oxygen catalyst for rechargeable Zn–air battery[J]. Journal of Materials Chemistry A,2020,8(36):19043-19049. doi: 10.1039/D0TA06435A
    [72] Meng T, Hao Y, Zheng L, et al. Organophosphoric acid-derived CoP quantum dots@S, N-codoped graphite carbon as a trifunctional electrocatalyst for overall water splitting and Zn–air batteries[J]. Nanoscale,2018,10(30):14613-14626. doi: 10.1039/C8NR03299H
    [73] Li Y, Liu Y, Qian Q, et al. Supramolecular assisted one-pot synthesis of donut-shaped CoP@PNC hybrid nanostructures as multifunctional electrocatalysts for rechargeable Zn-air batteries and self-powered hydrogen production[J]. Energy Storage Materials,2020(28):27-36.
    [74] Li H, Zhang H, Yan X, et al. Carbon-supported metal single atom catalysts[J]. New Carbon Materials,2018,33(1):1-11. doi: 10.1016/S1872-5805(18)60322-1
    [75] Wang Y, Yu B, Liu K, et al. Co single-atoms on ultrathin N-doped porous carbon via a biomass complexation strategy for high performance metal–air batteries[J]. Journal of Materials Chemistry A,2020,8(4):2131-2139. doi: 10.1039/C9TA12171D
    [76] Wang X, Liao Z, Fu Y, et al. Confined growth of porous nitrogen-doped cobalt oxide nanoarrays as bifunctional oxygen electrocatalysts for rechargeable zinc–air batteries[J]. Energy Storage Materials,2020(26):157-164.
    [77] Yu Y, You S, Du J, et al. Ti3+-self-doped TiO2 with multiple crystal-phases anchored on acid-pickled ZIF-67-derived Co3O4@N-doped graphitized-carbon as a durable catalyst for oxygen reduction in alkaline and acid media[J]. Chemical Engineering Journal,2021(403):126441.
    [78] Du J, You S, Li X, et al. In situ immobilization of copper oxide thin-layer on zeolitic imidazolate framework-67-derived cobalt oxide@nitrogen-doped carbon with multi-level architecture and versatile active sites for enhancing oxygen evolution/reduction reactions[J]. Journal of Power Sources,2020(478):228707.
    [79] Tao Y, Kong Z, Wei Y, et al. Synthesis and electrochemical performance of S/mesoporous carbon microsphere-MoS2 cathode materials[J]. New Carbon Materials,2019,34(4):349 − 357.
    [80] Xu Y, Sumboja A, Zong Y, et al. Bifunctionally active nanosized spinel cobalt nickel sulfides for sustainable secondary zinc–air batteries: Examining the effects of compositional tuning on OER and ORR activity[J]. Catalysis Science & Technology,2020,10(7):2173-2182.
    [81] Han C, Li Q, Wang D, et al. Cobalt sulfide nanowires core encapsulated by a N, S codoped graphitic carbon shell for efficient oxygen reduction reaction[J]. Small,2018,14(17):1703642. doi: 10.1002/smll.201703642
    [82] Yan B, Krishnamurthy D, Hendon C H, et al. Surface restructuring of nickel sulfide generates optimally coordinated active sites for oxygen reduction catalysis[J]. Joule,2017,1(3):600-612. doi: 10.1016/j.joule.2017.08.020
    [83] Higgins D C, Hassan F M, Seo M H, et al. Shape-controlled octahedral cobalt disulfide nanoparticles supported on nitrogen and sulfur-doped graphene/carbon nanotube composites for oxygen reduction in acidic electrolyte[J]. Journal of Materials Chemistry A,2015,3(12):6340-6350. doi: 10.1039/C4TA06667G
    [84] Qiao X, Jin J, Fan H, et al. In situ growth of cobalt sulfide hollow nanospheres embedded in nitrogen and sulfur co-doped graphene nanoholes as a highly active electrocatalyst for oxygen reduction and evolution[J]. Journal of Materials Chemistry A,2017,5(24):12354-12360. doi: 10.1039/C7TA00993C
    [85] Yao S, Huang T, Fang H, et al. Cobalt sulfides as efficient catalyst towards oxygen reduction reactions[J]. Chinese Chemical Letters,2020,31(2):530-534. doi: 10.1016/j.cclet.2019.04.069
    [86] Sumboja A, Chen J, Ma Y, et al. Sulfur-rich colloidal nickel sulfides as bifunctional catalyst for all-solid-state, flexible and rechargeable Zn-Air batteries[J]. ChemCatChem,2019,11(4):1205-1213. doi: 10.1002/cctc.201802013
    [87] Yan W, Cao X, Wang R, et al. S, N co-doped rod-like porous carbon derived from S, N organic ligand assembled Ni-MOF as an efficient electrocatalyst for oxygen reduction reaction[J]. Journal of Solid State Chemistry,2019(275):167-173.
    [88] Liu P, Hao B, Zhang H, et al. Atomic-scale investigation of carbon-based materials by gentle transmission electron microscopy[J]. New Carbon Materials,2021,36(3):497-511. doi: 10.1016/S1872-5805(21)60040-9
    [89] Liu J, Xu L, Deng Y, et al. Metallic cobalt nanoparticles embedded in sulfur and nitrogen co-doped rambutan-like nanocarbons for the oxygen reduction reaction under both acidic and alkaline conditions[J]. Journal of Materials Chemistry A,2019,7(23):14291-14301. doi: 10.1039/C9TA01234F
    [90] Tan M, Xiao Y, Xi W, et al. Cobalt-nanoparticle impregnated nitrogen-doped porous carbon derived from Schiff-base polymer as excellent bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries[J]. Journal of Power Sources,2021(490):229570.
    [91] Rao P, Cui P, Yang L, et al. Surface plasma-etching treatment of cobalt nanoparticles-embedded honeysuckle-like nitrogen-doped carbon nanotubes to produce high-performance catalysts for rechargeable zinc-air batteries[J]. Journal of Power Sources,2020(453):227858.
    [92] Hu Y, Jensen J, Zhang W, et al. Hollow spheres of iron carbide nanoparticles encased in graphitic layers as oxygen reduction catalysts[J]. Angewandte Chemie International Edition,2014,53(14):3675-3679. doi: 10.1002/anie.201400358
    [93] Xia H, Zhang S, Zhu X, et al. Highly efficient catalysts for oxygen reduction using well-dispersed iron carbide nanoparticles embedded in multichannel hollow nanofibers[J]. Journal of Materials Chemistry A,2020,8(35):18125-18131. doi: 10.1039/D0TA06306A
    [94] Lee J, Park G, Kim S, et al. A highly efficient electrocatalyst for the oxygen reduction reaction: N-doped ketjenblack incorporated into Fe/Fe3C-functionalized melamine foam[J]. Angewandte Chemie International Edition,2013,125(3):1060-1064.
    [95] Xiao Z, Wu C, Wang W, et al. Tailoring the hetero-structure of iron oxides in the framework of nitrogen doped carbon for the oxygen reduction reaction and zinc–air batteries[J]. Journal of Materials Chemistry A,2020,8(48):25791-25804. doi: 10.1039/D0TA09828K
    [96] Lei Y, Yang F, Xie H, et al. Biomass in situ conversion to Fe single atomic sites coupled with Fe2O3 clusters embedded in porous carbons for the oxygen reduction reaction[J]. Journal of Materials Chemistry A,2020,8(39):20629-20636. doi: 10.1039/D0TA06022D
    [97] Ma N, Jia Y, Yang X, et al. Seaweed biomass derived (Ni, Co)/CNT nanoaerogels: Efficient bifunctional electrocatalysts for oxygen evolution and reduction reactions[J]. Journal of Materials Chemistry A,2016,4(17):6376-6384. doi: 10.1039/C6TA00591H
    [98] Tan Y, Zhang Z, Lei Z, et al. Thiourea-zeolitic imidazolate framework-67 assembly derived Co–CoO nanoparticles encapsulated in N, S Codoped open carbon shell as bifunctional oxygen electrocatalyst for rechargeable flexible solid Zn–Air batteries[J]. Journal of Power Sources,2020(473):228570.
    [99] Hu H, Han L, Yu M, et al. Metal–organic-framework-engaged formation of Co nanoparticle-embedded carbon@Co9S8 double-shelled nanocages for efficient oxygen reduction[J]. Energy & Environmental Science,2016,9(1):107-111.
    [100] Tian Y, Xu L, Li M, et al. Interface engineering of CoS/CoO@N-doped graphene nanocomposite for high-performance rechargeable Zn–Air batteries[J]. Nano-Micro Letters,2020,13(1):3.
    [101] Peng W, Yang X, Mao L, et al. ZIF-67-derived Co nanoparticles anchored in N doped hollow carbon nanofibers as bifunctional oxygen electrocatalysts[J]. Chemical Engineering Journal,2021(407):127157.
    [102] Li P, Wang H, Fan W, et al. Salt assisted fabrication of lignin-derived Fe, N, P, S codoped porous carbon as trifunctional catalyst for Zn-air batteries and water-splitting devices[J]. Chemical Engineering Journal,2021(421):129704.
  • 加载中
图(9)
计量
  • 文章访问数:  1186
  • HTML全文浏览量:  695
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-02
  • 修回日期:  2021-06-27
  • 网络出版日期:  2021-07-05
  • 刊出日期:  2021-07-30

目录

    /

    返回文章
    返回