留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress on the biomedical uses of graphene and its derivatives

LIU Yang DING Jing WANG Qi-qi WEN Mei-ling TANG Ting-ting LIU Yong YUAN Rong LI Yong-feng AN Mei-wen

刘阳, 丁婧, 王奇奇, 文美玲, 唐婷婷, 刘勇, 袁蓉, 李永锋, 安美文. 石墨烯及其衍生物在生物医药方面的研究进展[J]. 新型炭材料, 2021, 36(4): 779-793. doi: 10.1016/S1872-5805(21)60073-2
引用本文: 刘阳, 丁婧, 王奇奇, 文美玲, 唐婷婷, 刘勇, 袁蓉, 李永锋, 安美文. 石墨烯及其衍生物在生物医药方面的研究进展[J]. 新型炭材料, 2021, 36(4): 779-793. doi: 10.1016/S1872-5805(21)60073-2
LIU Yang, DING Jing, WANG Qi-qi, WEN Mei-ling, TANG Ting-ting, LIU Yong, YUAN Rong, LI Yong-feng, AN Mei-wen. Research progress on the biomedical uses of graphene and its derivatives[J]. NEW CARBON MATERIALS, 2021, 36(4): 779-793. doi: 10.1016/S1872-5805(21)60073-2
Citation: LIU Yang, DING Jing, WANG Qi-qi, WEN Mei-ling, TANG Ting-ting, LIU Yong, YUAN Rong, LI Yong-feng, AN Mei-wen. Research progress on the biomedical uses of graphene and its derivatives[J]. NEW CARBON MATERIALS, 2021, 36(4): 779-793. doi: 10.1016/S1872-5805(21)60073-2

石墨烯及其衍生物在生物医药方面的研究进展

doi: 10.1016/S1872-5805(21)60073-2
基金项目: 国家自然科学基金项目(31870934);国家自然科学青年项目(12002232);山西省白求恩医院院基金(2019YJ12)
详细信息
    通讯作者:

    李永锋,副教授. E-mail:liyongfeng@tyut.edu.cn

    安美文,教授. E-mail:meiwen_an@163.com

  • 中图分类号: R751

Research progress on the biomedical uses of graphene and its derivatives

Funds: This work was supported by National Natural Science Foundation of China (31870934), National Natural Science Foundation of China Youth Project (12002232), College fund of Shanxi Bethune Hospital (2019YJ12)
More Information
  • 摘要: 石墨烯是紧密堆积在二维蜂窝状晶格中一层扁平的碳原子单层,具有良好的光学性、导电性、力学性、低毒性、抗菌性、生物相容性和稳定性。氧化石墨烯、还原氧化石墨烯是石墨烯的衍生物,具备石墨烯类似的性质,石墨烯及其衍生物的研究进展十分迅速,在生物医药方向拥有较大的应用潜力。本文从石墨烯及其衍生物的毒性、抗菌性的角度出发,综述了石墨烯及其衍生物在治疗皮肤创伤、治疗肿瘤、促进骨骼肌和骨再生、载药、诊断疾病等方面的应用,并提出了目前所存在的问题和解决对策,展望了未来石墨烯基材料的研究发展前景。
  • FIG. 783.  FIG. 783.

    FIG. 783.. 

    Figure  1.  Schematic diagram of the GO−PEG−PEI-based Cas9/sgRNA delivery system ( Reprinted with permission)[11].

    Figure  2.  Schematic illustrations for the preparation of 2D TRB-ZnO@Gr nanosheets (Reprinted with permission)[20].

    Figure  3.  Diagrammatic sketch of HA-DA/rGO hydrogel preparation: (a) preparation scheme of HA-DA polymer, (b) rGO@PDA and (c) scheme of HA-DA/rGO hydrogel and the original, bending, compressing, self-healing representation and the application in wound healing. Scale bar: 5 mm. (DA and PDA are abbreviated forms of dopamine and polydopamine, respectively) (Reprinted with permission)[50].

    Figure  4.  Schematic diagram describing different roles of graphene in cancer theranostics (Reprinted with permission)[93].

    Figure  5.  Multi-functional graphene composites.

  • [1] Volkov Y, Mcintyre J, Prina-Mello A. Graphene toxicity as a double-edged sword of risks and exploitable opportunities: a critical analysis of the most recent trends and developments[J]. 2D Materials,2017,4(2):022001. doi: 10.1088/2053-1583/aa5476
    [2] Wang Beidi. Study on the functionalization and preliminary application of graphene oxide[D]. Master Degree, Fudan University, 2012.
    [3] Chen Jianli. Chemical functionalization of graphene oxide and graphene-based derivatives/nanocomposites: preparations and properties[D]. Doctoral Degree, Jilin University, 2013.
    [4] Liao K H, Lin Y S, Macosko C W, et al. Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts[J]. ACS Applied Materials & Interfaces,2011,3(7):2607-2615.
    [5] Maity S, Pakhira B, Ghosh S, et al. Microcarbon-based facial creams activate aerial oxygen under light to reactive oxygen species damaging cell[J]. Applied Nanoscience,2017,7(8):607-616. doi: 10.1007/s13204-017-0604-9
    [6] Bengtson S, Kling K, Madsen A M, et al. No cytotoxicity or genotoxicity of graphene and graphene oxide in murine lung epithelial FE1 cells in vitro[J]. Environmental and Molecular Mutagenesis,2016,57(6):469-482. doi: 10.1002/em.22017
    [7] De Luna La V, De Moraes A C M, Consonni S R, et al. Comparative in vitro toxicity of a graphene oxide-silver nanocomposite and the pristine counterparts toward macrophages[J]. Journal of Nanobiotechnology,2016,14:12. doi: 10.1186/s12951-016-0165-1
    [8] Ionita M, Crica L E, Voicu S I, et al. Synergistic effect of carbon nanotubes and graphene for high performance cellulose acetate membranes in biomedical applications[J]. Carbohydrate Polymers,2018,183:50-61. doi: 10.1016/j.carbpol.2017.10.095
    [9] Pena-Bahamonde J, San Miguel V, Nguyen H N, et al. Functionalization of reduced graphene oxide with polysulfone brushes enhance antibacterial properties and reduce human cytotoxicity[J]. Carbon,2017,111:258-268. doi: 10.1016/j.carbon.2016.10.005
    [10] Yan D, Zhao H Y, Pei J Y, et al. The rational designed graphene oxide-Fe2O3 composites with low cytotoxicity[J]. Materials Science & Engineering C-Materials for Biological Applications,2017,72:659-666.
    [11] Ganguly P, Breen A, Pillai S C. Toxicity of nanomaterials: exposure, pathways, assessment, and recent advances[J]. Acs Biomaterials Science & Engineering,2018,4(7):2237-2275.
    [12] Siew Q Y, Tham S Y, Loh H S, et al. One-step green hydrothermal synthesis of biocompatible graphene/TiO2 nanocomposites for non-enzymatic H2O2 detection and their cytotoxicity effects on human keratinocyte and lung fibroblast cells[J]. Journal of Materials Chemistry B,2018,6(8):1195-1206. doi: 10.1039/C7TB02891A
    [13] Khatamian M, Divband B, Farahmand-Zahed F. Synthesis and characterization of zinc (II)-loaded zeolite/graphene oxide nanocomposite as a new drug carrier[J]. Materials Science & Engineering C-Materials for Biological Applications,2016,66:251-258.
    [14] Carpio I E M, Santos C M, Wei X,et al. Toxicity of a polymer-graphene oxide composite against bacterial planktonic cells, biofilms, and mammalian cells[J]. Nanoscale,2012,4(15):4746-4756. doi: 10.1039/c2nr30774j
    [15] Cho Y C, Pak P J, Joo Y H, et al. In vitro and in vivo comparison of the immunotoxicity of single- and multi-layered graphene oxides with or without pluronic F-127[J]. Scientific Reports,2016,6(1):38884. doi: 10.1038/srep38884
    [16] Pulingam T, Thong K L, Appaturi J N, et al. Synergistic antibacterial actions of graphene oxide and antibiotics towards bacteria and the toxicological effects of graphene oxide on human epidermal keratinocytes[J]. European Journal of Pharmaceutical Sciences,2020,142:105087. doi: 10.1016/j.ejps.2019.105087
    [17] Wu S, Liu Y, Zhang H, et al. Nano-graphene oxide improved the antibacterial property of antisense yycG RNA on staphylococcus aureus[J]. Journal of Orthopaedic Surgery and Research,2019,14(1):305. doi: 10.1186/s13018-019-1356-x
    [18] Khalil W A, Sherif H H A, Hemdan B A, et al. Biocompatibility enhancement of graphene oxide-silver nanocomposite by functionalisation with polyvinylpyrrolidone[J]. IET Nanobiotechnol,2019,13(8):816-823. doi: 10.1049/iet-nbt.2018.5321
    [19] Stan M S, Nica I C, Popa M, et al. Reduced graphene oxide/TiO2 nanocomposites coating of cotton fabrics with antibacterial and self-cleaning properties[J]. Journal of Industrial Textiles,2018,49(3):277-293.
    [20] Fan X, Yang F, Huang J, et al. Metal-organic-framework-derived 2D carbon nanosheets for localized multiple bacterial eradication and augmented anti-infective therapy[J]. Nano Letters,2019,19(9):5885-5896. doi: 10.1021/acs.nanolett.9b01400
    [21] Liang Y, Chen B, Li M, et al. Injectable antimicrobial conductive hydrogels for wound disinfection and infectious wound healing[J]. Biomacromolecules,2020,21(5):1841-1852. doi: 10.1021/acs.biomac.9b01732
    [22] Huang S, Liu H, Liao K, et al. Functionalized GO nanovehicles with nitric oxide release and photothermal activity-based hydrogels for bacteria-infected wound healing[J]. ACS Applied Materials & Interfaces,2020,12(26):28952-28964.
    [23] Jian Z, Wang H, Liu M, et al. Polyurethane-modified graphene oxide composite bilayer wound dressing with long-lasting antibacterial effect[J]. Materials Science & Engineering C-Materials for Biological Applications,2020,111:110833.
    [24] Jang J, Lee J M, Oh S B, et al. Development of antibiofilm nanocomposites: Ag/Cu bimetallic nanoparticles synthesized on the surface of graphene oxide nanosheets[J]. ACS Applied Materials & Interfaces,2020,12(32):35826-35834.
    [25] Zhang Y, Ruan H, Guo C, et al. Thin-film nanocomposite reverse osmosis membranes with enhanced antibacterial resistance by incorporating p-aminophenol-modified graphene oxide[J]. Separation and Purification Technology,2020,234:116017-116017. doi: 10.1016/j.seppur.2019.116017
    [26] Oves M, Rauf M A, Ansari M O, et al. Graphene decorated zinc oxide and curcumin to disinfect the methicillin-resistant staphylococcus aureus[J]. Nanomaterials,2020,10(5):1004. doi: 10.3390/nano10051004
    [27] Xu W P, Zhang L C, Li J P, et al. Facile synthesis of silver@graphene oxide nanocomposites and their enhanced antibacterial properties[J]. Journal of Materials Chemistry,2011,21(12):4593-4597. doi: 10.1039/c0jm03376f
    [28] Shoeb M, Mobin M, Rauf M A, et al. In vitro and in vivo antimicrobial evaluation of graphene-polyindole (Gr@PIn) nanocomposite against methicillin-resistant staphylococcus aureus pathogen[J]. ACS Omega,2018,3(8):9431-9440. doi: 10.1021/acsomega.8b00326
    [29] Cui J, Liu Y. Preparation of graphene oxide with silver nanowires to enhance antibacterial properties and cell compatibility[J]. RSC Advances,2015,5(104):85748-85755. doi: 10.1039/C5RA16371D
    [30] Li C, Ye R, Bouckaert J, et al. Flexible nanoholey patches for antibiotic-free treatments of skin infections[J]. ACS Applied Materials & Interfaces,2017,9(42):36665-36674.
    [31] Yan X, Fang W W, Xue J, et al. Thermoresponsive in situ forming hydrogel with sol-gel irreversibility for effective methicillin-resistant staphylococcus aureus infected wound healing[J]. ACS Nano,2019,13(9):10074-10084. doi: 10.1021/acsnano.9b02845
    [32] Tong C, Li L, Xiao F, et al. Daptomycin and AgNP co-loaded rGO nanocomposites for specific treatment of Gram-positive bacterial infection in vitro and in vivo[J]. Biomaterials Science,2019,7(12):5097-5111. doi: 10.1039/C9BM01229J
    [33] Sadeghianmaryan A, Karimi Y, Naghieh S, et al. Electrospinning of scaffolds from the polycaprolactone/polyurethane composite with graphene oxide for skin tissue engineering[J]. Applied Biochemistry and Biotechnology,2020,191(2):567-578. doi: 10.1007/s12010-019-03192-x
    [34] Pourjavadi A, Mazaheri Tehrani Z, Salami H, et al. Both tough and soft double network hydrogel nanocomposite based on O‐carboxymethyl chitosan/poly(vinyl alcohol) and graphene oxide: a promising alternative for tissue engineering[J]. Polymer Engineering & Science,2020,60(5):889-899.
    [35] Mahmoudi N, Eslahi N, Mehdipour A, et al. Temporary skin grafts based on hybrid graphene oxide-natural biopolymer nanofibers as effective wound healing substitutes: pre-clinical and pathological studies in animal models[J]. Journal of Materials Science: Materials in Medicine,2017,28(5):73. doi: 10.1007/s10856-017-5874-y
    [36] Li Longjian. Study on the preparation of aloin—loaded graphene oxide gel and its effect on wound healing[D]. Master Degree, Zhejiang University, 2017.
    [37] Li J, Zhou C, Luo C,et al. N-acetyl cysteine-loaded graphene oxide-collagen hybrid membrane for scarless wound healing[J]. Theranostics,2019,9(20):5839-5853. doi: 10.7150/thno.34480
    [38] Tang P, Han L, Li P, et al. Mussel-inspired electroactive and antioxidative scaffolds with incorporation of polydopamine-reduced graphene oxide for enhancing skin wound healing[J]. ACS Applied Materials & Interfaces,2019,11(8):7703-7714.
    [39] Safina I, Bourdo S E, Algazali K M, et al. Graphene-based 2D constructs for enhanced fibroblast support[J]. PLoS One,2020,15(5):e0232670. doi: 10.1371/journal.pone.0232670
    [40] Jafarkhani M, Salehi Z, Bagheri Z, et al. Graphene functionalized decellularized scaffold promotes skin cell proliferation[J]. The Canadian Journal of Chemical Engineering,2019,98(1):62-68.
    [41] Kumar A, Zo S M, Kim J H, et al. Enhanced physical, mechanical, and cytocompatibility behavior of polyelectrolyte complex hydrogels by reinforcing halloysite nanotubes and graphene oxide[J]. Composites Science and Technology,2019,175:35-45. doi: 10.1016/j.compscitech.2019.03.008
    [42] Lasocka I, Jastrzebska E, Szulc-Dabrowska L, et al. The effects of graphene and mesenchymal stem cells in cutaneous wound healing and their putative action mechanism[J]. International Journal of Nanomedicine,2019,14:2281-2299. doi: 10.2147/IJN.S190928
    [43] Li Z, Wang H, Yang B, et al. Three-dimensional graphene foams loaded with bone marrow derived mesenchymal stem cells promote skin wound healing with reduced scarring[J]. Materials Science & Engineering C-Materials for Biological Applications,2015,57:181-188.
    [44] Haghshenas M, Hoveizi E, Mohammadi T,et al. Use of embryonic fibroblasts associated with graphene quantum dots for burn wound healing in Wistar rats[J]. In Vitro Cellular & Developmental Biology - Animal,2019,55(4):312-322.
    [45] Zhang B, He J, Shi M, et al. Injectable self-healing supramolecular hydrogels with conductivity and photo-thermal antibacterial activity to enhance complete skin regeneration[J]. Chemical Engineering Journal,2020,400:125994. doi: 10.1016/j.cej.2020.125994
    [46] Yu Xunzhou. Preparing a photothermal-induced targeted graphene nano-antibacterial materials for treatment of skin infection[D]. Master Degree, Army Medical University, 2019.
    [47] Qian Wei. Preparation of novel graphene-based composite materials and experimental study on using them to promote skin wound repair[D]. Doctoral Degree, Army Medical University, 2019.
    [48] Azarniya A, Eslahi N, Mahmoudi N, et al. Effect of graphene oxide nanosheets on the physico-mechanical properties of chitosan/bacterial cellulose nanofibrous composites[J]. Composites Part A: Applied Science and Manufacturing,2016,85:113-122. doi: 10.1016/j.compositesa.2016.03.011
    [49] Qian W, Hu X, He W, et al. Polydimethylsiloxane incorporated with reduced graphene oxide (rGO) sheets for wound dressing application: preparation and characterization[J]. Colloids and Surfaces B: Biointerfaces,2018,166:61-71. doi: 10.1016/j.colsurfb.2018.03.008
    [50] Liang Y, Zhao X, Hu T, et al. Adhesive hemostatic conducting injectable composite hydrogels with sustained drug release and photothermal antibacterial activity to promote full-thickness skin regeneration during wound healing[J]. Small,2019,15(12):1900046. doi: 10.1002/smll.201900046
    [51] Zhang Q, Du Q, Zhao Y, et al. Graphene oxide-modified electrospun polyvinyl alcohol nanofibrous scaffolds with potential as skin wound dressings[J]. RSC Advances,2017,7(46):28826-28836. doi: 10.1039/C7RA03997B
    [52] Di Luca M, Vittorio O, Cirillo G, et al. Electro-responsive graphene oxide hydrogels for skin bandages: the outcome of gelatin and trypsin immobilization[J]. International Journal of Pharmaceutics,2018,546(1-2):50-60. doi: 10.1016/j.ijpharm.2018.05.027
    [53] Li Zhonghua. The research on three-dimensional graphene foams loaded with bone marrow derived mesenchymal stem cells promoting skin wound healing[D]. Doctoral Degree, Shandong University, 2017.
    [54] Fusco L, Pelin M, Sosa S, et al. In vitro pro-inflammatory effects of graphene and graphene oxide on human skin keratinocytes and monocytes[J]. Basic & Clinical Pharmacology & Toxicology,2018,123:80-80.
    [55] Fusco L, Pelin M, Mukherjee S, et al. Keratinocytes are capable of selectively sensing low amounts of graphene-based materials:implications for cutaneous applications[J]. Carbon,2020,159:598-610. doi: 10.1016/j.carbon.2019.12.064
    [56] Li Q, Li F, Qi X, et al. Pluronic® F127 stabilized reduced graphene oxide hydrogel for the treatment of psoriasis: in vitro and in vivo studies[J]. Colloids and Surfaces B: Biointerfaces,2020,195:111246. doi: 10.1016/j.colsurfb.2020.111246
    [57] Chou H Y, Wang H D, Kuo C H, et al. Antioxidant graphene oxide nanoribbon as a novel whitening agent inhibits microphthalmia-associated transcription factor-related melanogenesis mechanism[J]. ACS Omega,2020,5(12):6588-6597. doi: 10.1021/acsomega.9b04316
    [58] Sarkar S, Gurjarpadhye A A, Rylander C G, et al. Optical properties of breast tumor phantoms containing carbon nanotubes and nanohorns[J]. Journal of Biomedical Optics,2011,16(5):051304. doi: 10.1117/1.3574762
    [59] Turcheniuk K, Dumych T, Bilyy R, et al. Plasmonic photothermal cancer therapy with gold nanorods/reduced graphene oxide core/shell nanocomposites[J]. RSC Advances,2016,6:1600-1610. doi: 10.1039/C5RA24662H
    [60] Matai I, Kaur G, Soni S, et al. Near-infrared stimulated hydrogel patch for photothermal therapeutics and thermoresponsive drug delivery[J]. Journal of Photochemistry & Photobiology, B: Biology,2020,210:111960.
    [61] Karbalaei A, Mohammadalipour Z, Rahmati M, et al. GO/TiO2 hybrid nanoparticles as a new photosensitizer in photodynamic therapy of A375 melanoma cancer cells[J]. Journal of Skin and Stem Cell,2016,4(2):e63984.
    [62] Ahirwar S, Mallick S, Bahadur D. Photodynamic therapy using graphene quantum dot derivatives[J]. Journal of Solid State Chemistry,2020,282:121107. doi: 10.1016/j.jssc.2019.121107
    [63] Han R, Tang K, Hou Y, et al. Ultralow-intensity near infrared light synchronously activated collaborative chemo/photothermal/photodynamic therapy[J]. Biomaterials Science,2020,8(2):607-618. doi: 10.1039/C9BM01607D
    [64] Liu J, Saul D, Boker K O, et al. Current methods for skeletal muscle tissue repair and regeneration[J]. Biomed Research International,2018,2018:1-11.
    [65] Tedesco F S, Cossu G. Stem cell therapies for muscle disorders[J]. Current Opinion in Neurology,2012,25(5):597-603. doi: 10.1097/WCO.0b013e328357f288
    [66] Charge S B P, Rudnicki M A. Cellular and molecular regulation of muscle regeneration[J]. Physiological reviews,2004,84(1):209-238. doi: 10.1152/physrev.00019.2003
    [67] Jenkins T L, Little D. Synthetic scaffolds for musculoskeletal tissue engineering: cellular responses to fiber parameters[J]. Npj Regenerative Medicine,2019,4:15. doi: 10.1038/s41536-019-0076-5
    [68] Palmieri V, Sciandra F, Bozzi M, et al. 3D graphene scaffolds for skeletal muscle regeneration: future perspectives[J]. Frontiers in Bioengineering and Biotechnology,2020,8:383. doi: 10.3389/fbioe.2020.00383
    [69] Dai Z H, Wang Y L, Liu L Q, et al. Hierarchical graphene-based films with dynamic self-siffening for biomimetic artificial muscle[J]. Advanced Functional Materials,2016,26(38):7003-7010. doi: 10.1002/adfm.201503917
    [70] Krueger E, Chang A N, Brown D, et al. Graphene foam as a three-dimensional platform for myotube growth[J]. Acs Biomaterials Science & Engineering,2016,2(8):1234-1241.
    [71] Papi M, Palmieri V, Bugli F, et al. Biomimetic antimicrobial cloak by graphene-oxide agar hydrogel.[J]. Scientific Reports,2017,7(1):12. doi: 10.1038/s41598-017-00047-5
    [72] Park J, Choi J H, Kim S, et al. Micropatterned conductive hydrogels as multifunctional muscle-mimicking biomaterials: graphene-incorporated hydrogels directly patterned with femtosecond laser ablation[J]. Acta Biomaterialia,2019,97:141-153. doi: 10.1016/j.actbio.2019.07.044
    [73] Grasman J M, Zayas M J, Page R L, et al. Biomimetic scaffolds for regeneration of volumetric muscle loss in skeletal muscle injuries[J]. Acta Biomaterialia,2015,25:2-15. doi: 10.1016/j.actbio.2015.07.038
    [74] Ciriza J, Del Burgo L S, Virumbrales-Munoz M, et al. Graphene oxide increases the viability of C2C12 myoblasts microencapsulated in alginate[J]. International Journal of Pharmaceutics,2015,493(1-2):260-270. doi: 10.1016/j.ijpharm.2015.07.062
    [75] Ciriza J, Saenz Del Burgo L, Gurruchaga H,et al. Graphene oxide enhances alginate encapsulated cells viability and functionalty while not affecting the foreign body response[J]. Drug Delivery,2018,25(1):1147-1160. doi: 10.1080/10717544.2018.1474966
    [76] Choe G, Kim S W, Park J, et al. Anti-oxidant activity reinforced reduced graphene oxide/alginate microgels: mesenchymal stem cell encapsulation and regeneration of infarcted hearts[J]. Biomaterials,2019,225:119513. doi: 10.1016/j.biomaterials.2019.119513
    [77] Shin Y C, Kang S H, Lee J H, et al. Three-dimensional graphene oxide-coated polyurethane foams beneficial to myogenesis[J]. Journal of Biomaterials Science-Polymer Edition,2018,29(7-9):762-774. doi: 10.1080/09205063.2017.1348738
    [78] Jo S B, Erdenebileg U, Dashnyam K, et al. Nano-graphene oxide/polyurethane nanofibers: mechanically flexible and myogenic stimulating matrix for skeletal tissue engineering[J]. Journal of Tissue Engineering,2020,11:2041731419900424.
    [79] Azizi M, Navidbakhsh M, Hosseinzadeh S, et al. Cardiac cell differentiation of muscle satellite cells on aligned composite electrospun polyurethane with reduced graphene oxide[J]. Journal of Polymer Research,2019,26(11):258. doi: 10.1007/s10965-019-1936-9
    [80] Shin Y C, Lee J H, Jin L H, et al. Stimulated myoblast differentiation on graphene oxide-impregnated PLGA-collagen hybrid fibre matrices[J]. Journal of Nanobiotechnology,2015,13:21. doi: 10.1186/s12951-015-0081-9
    [81] Shin Y C, Kim C, Song S-J, et al. Ternary aligned nanofibers of RGD peptide-displaying M13 bacteriophage/PLGA/graphene oxide for facilitated myogenesis[J]. Nanotheranostics,2018,2(2):144-156. doi: 10.7150/ntno.22433
    [82] Nakayama K H, Shayan M, Huang N F. Engineering biomimetic materials for skeletal muscle repair and regeneration[J]. Advanced Healthcare Materials,2019,8(5):1801168.
    [83] Ge Zhen, Zou Gang, Liu Yi, et al. Tissue-engineering scaffolds: characteristics and applications in tissue engineering[J]. Chinese Journal of Tissue Engineering Research,2018,22(26):4222-4228.
    [84] Zhang S, Yang Q, Zhao W, et al. In vitro and in vivo biocompatibility and osteogenesis of graphene-reinforced nanohydroxyapatite polyamide66 ternary biocomposite as orthopedic implant material[J]. International Journal of Nanomedicine,2016,11:3179-3189. doi: 10.2147/IJN.S105794
    [85] Rethinam S, Wilson Aruni A, Vijayan S,et al. Enhanced bone regeneration using an electrospun nanofibrous membrane – a novel approach[J]. Journal of Drug Delivery Science and Technology,2019,53:101163-101163. doi: 10.1016/j.jddst.2019.101163
    [86] Talukdar Y, Rashkow J T, Patel S, et al. Nanofilm generated non-pharmacological anabolic bone stimulus[J]. Journal of Biomedical Materials Research Part A,2020,108(1):178-186. doi: 10.1002/jbm.a.36807
    [87] Kurantowicz N, Strojny B, Sawosz E, et al. Biodistribution of a high dose of diamond, graphite, and graphene oxide nanoparticles after multiple intraperitoneal injections in rats[J]. Nanoscale Research Letters,2015,10(1):398. doi: 10.1186/s11671-015-1107-9
    [88] Richard J. Chitosan-graphene nanocomposite microneedle arrays for transdermal drug delivery[D]. Doctoral Degree, University of Sheffield, 2015.
    [89] Yadav I, Nayak S K, Rathnam V S S, et al. Reinforcing effect of graphene oxide reinforcement on the properties of poly (vinyl alcohol) and carboxymethyl tamarind gum based phase-separated film[J]. Journal of the Mechanical Behavior of Biomedical Materials,2018,81:61-71. doi: 10.1016/j.jmbbm.2018.02.021
    [90] Ganguly S, Das P, Maity P P, et al. Green reduced graphene oxide toughened semi-IPN monolith hydrogel as dual responsive drug release system: rheological, physicomechanical, and electrical evaluations[J]. The Journal of Physical Chemistry Part B,2018,122(29):7201-7218. doi: 10.1021/acs.jpcb.8b02919
    [91] Altinbasak I, Jijie R, Barras A, et al. Reduced graphene-oxide-embedded polymeric nanofiber mats: an "on-demand" photothermally triggered antibiotic release platform[J]. ACS Applied Materials & Interfaces,2018,10(48):41098-41106.
    [92] Pagneux Q, Ye R, Chengnan L, et al. Electrothermal patches driving the transdermal delivery of insulin[J]. Nanoscale Horizons,2020,5(4):663-670. doi: 10.1039/C9NH00576E
    [93] Geetha Bai R, Ninan N, Muthoosamy K, et al. Graphene: a versatile platform for nanotheranostics and tissue engineering[J]. Progress in Materials Science,2018,91:24-69. doi: 10.1016/j.pmatsci.2017.08.004
    [94] Wang M, Wiraja C, Wee M, et al. Hairpin-structured probe conjugated nano-graphene oxide for the cellular detection of connective tissue growth factor mRNA[J]. Analytica Chimica Acta,2018,1038:140-147. doi: 10.1016/j.aca.2018.07.016
    [95] Qi X, Liu H, Guo W, et al. New opportunities: second harmonic generation of boron-doped graphene quantum dots for stem cells imaging and ultraprecise tracking in wound healing[J]. Advanced Functional Materials,2019,29(37):1902235.1-1902235.10.
    [96] Guo J, Zhong Z, Li Y, et al. "Three-in-one" SERS adhesive tape for rapid sampling, release, and detection of wound infectious pathogens[J]. ACS Applied Materials & Interfaces,2019,11(40):36399-36408.
    [97] You X, Yang S, Li J, et al. Green and mild oxidation: an efficient strategy toward water-dispersible graphene[J]. ACS Applied Materials & Interfaces,2017,9(3):2856-2866.
    [98] Ramadas M, Bharath G, Ponpandian N, et al. Investigation on biophysical properties of hydroxyapatite/graphene oxide (HAp/GO) based binary nanocomposite for biomedical applications[J]. Materials Chemistry and Physics,2017,199:179-184. doi: 10.1016/j.matchemphys.2017.07.001
    [99] Hussein K H, Abdelhamid H N, Zou X, et al. Ultrasonicated graphene oxide enhances bone and skin wound regeneration[J]. Materials Science & Engineering C-Materials for Biological Applications,2019,94:484-492.
    [100] Xue J, Wang X, Wang E, et al. Bioinspired multifunctional biomaterials with hierarchical microstructure for wound dressing[J]. Acta Biomaterialia,2019,100:270-279. doi: 10.1016/j.actbio.2019.10.012
    [101] Narayanan K B, Kim H D, Han S S. Biocompatibility and hemocompatibility of hydrothermally derived reduced graphene oxide using soluble starch as a reducing agent[J]. Colloids and Surfaces B: Biointerfaces,2020,185:110579. doi: 10.1016/j.colsurfb.2019.110579
    [102] Castilho C J, Li D, Liu M, et al. Mosquito bite prevention through graphene barrier layers[J]. Proceedings of The National Academy of Sciences of The United States of America,2019,116(37):18304-18309. doi: 10.1073/pnas.1906612116
    [103] Zhang G, Hu J, Ren T, et al. Microstructural and tribological properties of a dopamine hydrochloride and graphene oxide coating applied to multifilament surgical sutures[J]. Polymers (Basel),2020,12(8):1630. doi: 10.3390/polym12081630
    [104] Heo C, Lee S Y, Jo A, et al. Flexible, transparent, and noncytotoxic graphene electric field stimulator for effective cerebral blood volume enhancement[J]. ACS Nano,2013,7(6):4869-4878. doi: 10.1021/nn305884w
  • 加载中
图(6)
计量
  • 文章访问数:  124
  • HTML全文浏览量:  90
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-11
  • 修回日期:  2021-06-27
  • 网络出版日期:  2021-07-05
  • 刊出日期:  2021-07-30

目录

    /

    返回文章
    返回