留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of the air oxidation stabilization of pitch on the microstructure and sodium storage of hard carbons

GUO Hong-yi LI Yao-yu WANG Chun-lei HE Lei LI Chen GUO Yong-qiang ZHOU Ying

郭宏毅, 李姚谕, 王春雷, 贺磊, 李晨, 郭永强, 周颖. 空气氧化稳定化对沥青基硬炭材料的结构和储钠性能的影响[J]. 新型炭材料, 2021, 36(6): 1073-1080. doi: 10.1016/S1872-5805(21)60075-6
引用本文: 郭宏毅, 李姚谕, 王春雷, 贺磊, 李晨, 郭永强, 周颖. 空气氧化稳定化对沥青基硬炭材料的结构和储钠性能的影响[J]. 新型炭材料, 2021, 36(6): 1073-1080. doi: 10.1016/S1872-5805(21)60075-6
GUO Hong-yi, LI Yao-yu, WANG Chun-lei, HE Lei, LI Chen, GUO Yong-qiang, ZHOU Ying. Effect of the air oxidation stabilization of pitch on the microstructure and sodium storage of hard carbons[J]. NEW CARBON MATERIALS, 2021, 36(6): 1073-1080. doi: 10.1016/S1872-5805(21)60075-6
Citation: GUO Hong-yi, LI Yao-yu, WANG Chun-lei, HE Lei, LI Chen, GUO Yong-qiang, ZHOU Ying. Effect of the air oxidation stabilization of pitch on the microstructure and sodium storage of hard carbons[J]. NEW CARBON MATERIALS, 2021, 36(6): 1073-1080. doi: 10.1016/S1872-5805(21)60075-6

空气氧化稳定化对沥青基硬炭材料的结构和储钠性能的影响

doi: 10.1016/S1872-5805(21)60075-6
基金项目: 国家自然科学基金(21576047,U1510204,21776040)
详细信息
    通讯作者:

    周 颖,教授. E-mail: zhouying02@126.com

  • 中图分类号: TQ127.1+1

Effect of the air oxidation stabilization of pitch on the microstructure and sodium storage of hard carbons

Funds: The authors acknowledge the financial support by the National Natural Science Foundation of China, NSFC (21576047, U1510204, 21776040)
More Information
  • 摘要: 以石油沥青为原料,通过空气氧化稳定化及炭化方法成功制备出钠离子电池用硬炭负极材料。研究了不同氧化稳定化温度下样品组成、结构的变化,及其对炭化样品形貌、结构和储钠性能的影响。结果表明,空气氧化处理可以引入大量的含氧官能团,诱导脱氢缩合和氧化交联反应的发生,使石油沥青发生由热塑性向热固性的转化。空气氧化稳定化处理有效地阻碍了沥青在高温炭化中固有的石墨化倾向,使碳层堆叠变得无序、同时产生更多的缺陷位。电化学测试结果表明,在100 mA g−1的电流密度下,与直接炭化样品PDC-1400相比,350 ℃氧化稳定化、1400 ℃炭化的硬炭样品o-PDC-350-1400的比容量提升约1.8倍(达到276.8 mAh g−1);首效提高22%(达到73.38%)。样品o-PDC-350-1400循环200圈后,充电比容量达170.2 mAh g−1,具有良好的循环稳定性。
  • FIG. 1074.  FIG. 1074.

    FIG. 1074.. 

    Figure  1.  (a)X-ray diffraction patterns and (b) FT-IR analysis of petroleum asphalt and oxidized petroleum asphalt treated at different oxidation stabilization temperatures.

    Figure  2.  (a) XRD patterns and (b) Raman spectra of o-PDC-T-1400 series.

    Figure  3.  SEM images of (a) PDC-1400 and (c) o-PDC-350-1400, HRTEM images of (b) PDC-1400 and (d) o-PDC-350-1400 (inserts are the selected area electron diffraction patterns).

    Figure  4.  (a) Nitrogen adsorption curves and (b) pore size distributions of PDC-1400 and o-PDC-350-1400.

    Figure  5.  (a) Galvanostatic charge/discharge profiles, (b) column charts of slope capacity and platform capacity distribution and (c) rate performance under different current densities of the o-PDC-T-1400 series.

    Figure  6.  CV curves of (a) PDC-1400 and (b) o-PDC-350-1400 at a scan rate of 0.1 mV s−1 , (c) cyclic performance of the PDC-1400 and o-PDC-350-1400 under a current density of 30 mA g−1 .

    Table  1.   Element analysis, weight gain ratio and carbon yield of samples after oxidation stabilization.

    SamplesElemental composition(%)C/HOxidation weight gain(%)Yield of carbon(%)
    NCHO*
    Pitch0.1394.345.020.511.57-53.3
    o-P-1500.2591.415.083.261.500.451.8
    o-P-2000.2588.184.76.871.563.366.4
    o-P-2500.2381.323.2415.212.099.472.3
    o-P-3000.2574.582.3122.862.696.467.0
    o-P-3500.3570.911.3227.424.48−7.161.5
    Note: * Calculated by subtraction method
    下载: 导出CSV

    Table  2.   Crystalline parameters of pristine petroleum asphalt and samples after oxidation stabilization.

    SamplesFaDm(nm)Dr(nm)La(nm)Lc(nm)
    Pitch0.560.3620.5491.1130.544
    o-P-1500.540.3610.5341.1540.564
    o-P-2000.550.3580.5311.1510.563
    o-P-2500.600.3560.5351.0400.509
    o-P-3000.600.3570.5290.9030.442
    o-P-3500.570.3560.5300.8270.405
    下载: 导出CSV

    Table  3.   Crystalline parameters and electrochemical performance of o-PDC-T-1400 series.

    SamplesLc (nm)La (nm)d002(nm)ID/IGRC (mAh g−1 )ICE (%)
    PDC-14003.594.7390.3470.9599.651.45
    o-PDC-150-14003.5324.9310.3470.9499.851.92
    o-PDC-200-14003.4845.2920.3470.9593.148.70
    o-PDC-250-14001.4673.2920.3551.09221.373.81
    o-PDC-300-14001.3823.3990.3561.14230.373.02
    o-PDC-350-14001.3133.4400.3631.20276.873.38
    下载: 导出CSV
  • [1] Yamamoto H, Muratsubaki S, Kubota K, et al. Synthesizing higher-capacity hard-carbons from cellulose for Na- and K-ion batteries[J]. Journal of Materials Chemistry A,2018,6(35):16844-16848. doi: 10.1039/C8TA05203D
    [2] Xie F, Xu Z, Guo Z, et al. Hard carbons for sodium-ion batteries and beyond[J]. Prog Energy,2020,2:042002.
    [3] Pei L, Cao H, Yang L, et al. Hard carbon derived from waste tea biomass as high-performance anode material for sodium-ion batteries[J]. Ionics,2020,26:5535-5542.
    [4] Zhao G, Yu D, Zhang H, et al. Sulphur-doped carbon nanosheets derived from biomass as high-performance anode materials for sodium-ion batteries[J]. Nano Energy,2020,67:104219.
    [5] Yu Z, Lyu Y, Wang Y, et al. Hard carbon micro-nano tubes derived from kapok fiber as anode materials for sodium-ion batteries and the sodium-ion storage mechanism[J]. Chem Commun,2020,56:778-781.
    [6] Sun S, Yao J, Lin Y, et al. Triconstituent co-assembly to hierarchically porous carbons as high-performance anodes for sodium-ion batteries[J]. Journal of Alloys and Compounds,2019,771:140-146. doi: 10.1016/j.jallcom.2018.08.284
    [7] Yang L. Modified Asphalt and its Emulsification Technology [M]. China Communications Press, 2004.
    [8] Li Y, Hu Y, Li H, et al. A superior low-cost amorphous carbon anode made from pitch and lignin for sodium-ion batteries[J]. Journal of Materials Chemistry A,2016,4(1):96-104. doi: 10.1039/C5TA08601A
    [9] Li Y, Mu L, Hu Y, et al. Pitch-derived amorphous carbon as high performance anode for sodium-ion batteries[J]. Energy Storage Materials,2016,2:139-145. doi: 10.1016/j.ensm.2015.10.003
    [10] Miao Y, Zong J, Liu X. Phosphorus-doped pitch-derived soft carbon as an anode material for sodium ion batteries[J]. Materials Letters,2017,188:355-358. doi: 10.1016/j.matlet.2016.11.110
    [11] Fernández A, Granda M, Bermejo J, et al. Air-blowing of anthracene oil for carbon precursors[J]. Carbon,2000,38(9):1315-1322. doi: 10.1016/S0008-6223(99)00264-X
    [12] Zhang D. Production and Application of Petroleum Asphalt [M]. China Petrochemical Press, 2001.
    [13] Zhang Y, Liang W, LIU C. Investigation of asphaltenes in Gudao and Shanjiasi asphalts by xrd[J]. Acta Petrolei Sinica(Petroleum Processing Section),1989(3):7-14.
    [14] Ebert L, Scanlon J, Mills D. X-ray diffraction of n-paraffins and stacked aromatic molecules: insights into the structure of petroleum asphaltenes[J]. Liquid Fuels Technology,1984,2(3):257-286. doi: 10.1080/07377268408915353
    [15] Yen T, Erdman J, Pollack S. Investigation of the structure of petroleum asphaltenes by x-ray diffraction[J]. Analytical Chemistry,1961,33(11):1587-1594. doi: 10.1021/ac60179a039
    [16] Drbohlav J, Stevenson W. The oxidative stabilization and carbonization of a synthetic mesophase pitch, part II: The carbonization process[J]. Carbon,1995,33(5):713-731. doi: 10.1016/0008-6223(95)00012-3
    [17] Guan T, Zhang G, Zhao J, et al. Insight into the oxidative reactivity of pitch fractions for predicting and optimizing the oxidation stabilization of pitch[J]. Fuel,2019,242:184-194. doi: 10.1016/j.fuel.2019.01.034
    [18] Qiu S, Xiao L, Sushko M, et al. Manipulating adsorption-insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage[J]. Advanced Energy Materials,2017,7(17):1700403. doi: 10.1002/aenm.201700403
    [19] Bommier C, Surta T, Dolgos M, et al. New mechanistic insights on Na-ion storage in nongraphitizable carbon[J]. Nano Letters,2015,15(9):5888-5892. doi: 10.1021/acs.nanolett.5b01969
    [20] Qi Y, Lu Y, Ding F, et al. Slope-dominated carbon anode with high specific capacity and superior rate capability for high safety Na-ion batteries[J]. Angewandte Chemie International Edition,2019,58(13):4361-4365. doi: 10.1002/anie.201900005
    [21] Kim C, Verma D, Ho Nam D, et al. Conformal carbon layer coating on well-dispersed Si nanoparticles on graphene oxide and the enhanced electrochemical performance[J]. Journal of Industrial and Engineering Chemistry,2017,52:260-269. doi: 10.1016/j.jiec.2017.03.055
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  174
  • HTML全文浏览量:  73
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-12
  • 修回日期:  2020-10-11
  • 网络出版日期:  2021-11-12
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回