留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

One-pot modified “grafting-welding” preparation of graphene/ polyimide composite film for superior thermal management

LI Hao-liang WU Xian CHENG Kui ZHU Mo-han WANG Liu-si YU Hong-liu YANG Jun-he

李昊亮, 吴限, 程奎, 朱默涵, 王柳思, 喻洪流, 杨俊和. 一步法“改性-分子焊接”制备石墨烯/聚酰亚胺复合薄膜及其热管理应用[J]. 新型炭材料. doi: 10.1016/S1872-5805(21)60076-8
引用本文: 李昊亮, 吴限, 程奎, 朱默涵, 王柳思, 喻洪流, 杨俊和. 一步法“改性-分子焊接”制备石墨烯/聚酰亚胺复合薄膜及其热管理应用[J]. 新型炭材料. doi: 10.1016/S1872-5805(21)60076-8
LI Hao-liang, WU Xian, CHENG Kui, ZHU Mo-han, WANG Liu-si, YU Hong-liu, YANG Jun-he. One-pot modified “grafting-welding” preparation of graphene/ polyimide composite film for superior thermal management[J]. NEW CARBON MATERIALS. doi: 10.1016/S1872-5805(21)60076-8
Citation: LI Hao-liang, WU Xian, CHENG Kui, ZHU Mo-han, WANG Liu-si, YU Hong-liu, YANG Jun-he. One-pot modified “grafting-welding” preparation of graphene/ polyimide composite film for superior thermal management[J]. NEW CARBON MATERIALS. doi: 10.1016/S1872-5805(21)60076-8

一步法“改性-分子焊接”制备石墨烯/聚酰亚胺复合薄膜及其热管理应用

doi: 10.1016/S1872-5805(21)60076-8
基金项目: 上海市青年科技英才扬帆计划资助 (20YF1432100); 上海市科技创新项目 (19JC1410400); 上海市教育委员会创新项目 (2019-01-07-00-07-E00015)
详细信息
    通讯作者:

    杨俊和,博士,教授. E-mail:jhyang@usst.edu.cn

  • 中图分类号: TB33

One-pot modified “grafting-welding” preparation of graphene/ polyimide composite film for superior thermal management

Funds: The authors are thankful to Shanghai Sailing Program (20YF1432100), Shanghai Scientific and Technological Innovation Project (19JC1410400) and Innovation Program of Shanghai Municipal Education Commission (2019-01-07-00-07-E00015) for their financial supports to this study
More Information
  • 摘要: 随着5G通讯技术的迅猛发展,电子器件的热管理问题已受到广泛关注。本文提出一步“改性-焊接”方法制备石墨烯/聚酰亚胺复合薄膜(g-A-mGO/PI)。首先利用1,3双(4’-氨基苄基)苯(APB-134)对氧化石墨烯(GO)进行氨基接枝改性,作为活性位点与加入的均苯四甲酸二酐(PMDA)实现PI原位聚合。经过优化,g-A-mGO/PI-7%导热薄膜的平面内热导率提升48.92%。此外,薄膜经小角度弯折2000次,电阻变化<10%,表现出优异的抗弯折性能。这种“改性-焊接”的创新方法为石墨烯片层之间的声子传输提供了通路,降低了声子-边界散射,为石墨烯在热管理与热界面材料领域的应用提供了有效可行的方法。
  • Figure  1.  The schematic illustration of g-A-mGO/PI films.

    Figure  2.  The surface and cross-section SEM images: (a, b) GO, (c, d) A-mGO and (e, f) A-mGO/PAA-7%.

    Figure  3.  The XRD patterns of A-mGO/PAA films (a) before and (b) after the graphitization treatment.

    Figure  4.  The XPS spectroscopy of (a, b) C 1s spectra of A-mGO/PAA and A-mGO/PI; (c, d) N 1s spectra of A-mGO/PAA and A-mGO/PI composite film.

    Figure  5.  Raman spectroscopy of (a) A-mGO-PAA, (b) g- A-mGO-PI films, (c) fitted 2D band and (d) ID/IG ratio and R value of g-A-mGO/PI film.

    Figure  6.  (a) The thermal conductivity of g-A-mGO/PI composite films and (b) The resistance ratio (R/R0) of g-A-mGO/PI composite films at the bending crease. (Each point was measured by 5 times to calculate the average R/R0)

    Figure  7.  Proposed schematic representation of “grafting-welding” of A-mGO/PI. (a) Illustration of the modification of A-mGO, (b) Reaction between A-mGO and PAA during the imidization treatment and (c) The final structure of welded A-mGO/PI.

  • [1] Balandin A A. Phononics of graphene and related materials[J]. ACS Nano,2020,14(5):5170. doi: 10.1021/acsnano.0c02718
    [2] Balandin A A. Thermal properties of graphene and nanostructured carbon materials[J]. Nature Materials,2011,10(8):569-581. doi: 10.1038/nmat3064
    [3] Hishiyama Y, Yoshida A, Kaburagi Y, et al. Graphite films prepared from carbonized polyimide films[J]. Carbon,1992,30(3):333-337. doi: 10.1016/0008-6223(92)90027-T
    [4] Venkatachalam S, Depriester M, Sahraoui A H, et al. Thermal conductivity of Kapton-derived carbon[J]. Carbon,2017,114:134-140. doi: 10.1016/j.carbon.2016.11.072
    [5] Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters,2008,8(3):902-907. doi: 10.1021/nl0731872
    [6] Pop E, Mann D, Wang Q, et al. Thermal conductance of an individual single-wall carbon nanotube above room temperature[J]. Nano Letters,2006,6(1):96-100. doi: 10.1021/nl052145f
    [7] Ding J, Zhao H, Wang Q, et al. An ultrahigh thermal conductive graphene flexible paper[J]. Nanoscale,2017,9(43):16871-16878. doi: 10.1039/C7NR06667H
    [8] Xin G, Sun H, Hu T, et al. Large-area freestanding graphene paper for superior thermal management[J]. Advanced Materials,2014,26(26):4521-4526. doi: 10.1002/adma.201400951
    [9] Huang Y, Gong Q, Zhang Q, et al. Fabrication and molecular dynamics analyses of highly thermal conductive reduced graphene oxide films at ultra-high temperatures[J]. Nanoscale,2017,9(6):2340-2347. doi: 10.1039/C6NR06653D
    [10] Shen B, Zhai W, Zheng W. Ultrathin flexible graphene film: An excellent thermal conducting material with efficient EMI shielding[J]. Advanced Functional Materials,2014,24(28):4542-4548. doi: 10.1002/adfm.201400079
    [11] Wang B, Cunning B V, Kim N Y, et al. Ultrastiff, strong, and highly thermally conductive crystalline graphitic films with mixed stacking order[J]. Advanced Materials,2019,31(29):e1903039. doi: 10.1002/adma.201903039
    [12] Teng C, Xie D, Wang J, et al. Ultrahigh conductive graphene paper based on ball-milling exfoliated graphene[J]. Advanced Functional Materials,2017,27(20):1700240. doi: 10.1002/adfm.201700240
    [13] Xu J, Dai S, Li H, et al. Molecular dynamics simulation of the thermal conductivity of graphitized graphene/polyimide films[J]. New Carbon Materials,2018,33(3):213-220. doi: 10.1016/S1872-5805(18)60336-1
    [14] Kumar P, Shahzad F, Yu S, et al. Large-area reduced graphene oxide thin film with excellent thermal conductivity and electromagnetic interference shielding effectiveness[J]. Carbon,2015,94:494-500. doi: 10.1016/j.carbon.2015.07.032
    [15] Xu X, Pereira L F, Wang Y, et al. Length-dependent thermal conductivity in suspended single-layer graphene[J]. Nature Communication,2014,5:3689. doi: 10.1038/ncomms4689
    [16] Nika D L, Balandin A A. Two-dimensional phonon transport in graphene[J]. Journal of Physic: Condensed Matter,2012,24(23):233203. doi: 10.1088/0953-8984/24/23/233203
    [17] Peng L, Xu Z, Liu Z, et al. Ultrahigh thermal conductive yet superflexible graphene films[J]. Advanced Materials,2017,29(27):1700589. doi: 10.1002/adma.201700589
    [18] Li H, Dai S, Miao J, et al. Enhanced thermal conductivity of graphene/polyimide hybrid film via a novel “molecular welding” strategy[J]. Carbon,2018,126:319-327. doi: 10.1016/j.carbon.2017.10.044
    [19] Stankovich S, Piner R D, Nguyen S T, et al. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets[J]. Carbon,2006,44(15):3342-3347. doi: 10.1016/j.carbon.2006.06.004
    [20] Chua C K, Pumera M. Covalent chemistry on graphene[J]. Chemical Social Review,2013,42(8):3222-3233. doi: 10.1039/c2cs35474h
    [21] Song X, Zambare R S, Qi S, et al. Charge-gated ion transport through polyelectrolyte intercalated amine reduced graphene oxide membranes[J]. ACS Applied Materials Interfaces,2017,9(47):41482-41495. doi: 10.1021/acsami.7b13724
    [22] Huang T, Lu R, Su C, et al. Chemically modified graphenepolyimide composite films based on utilization of covalent bonding and oriented distribution[J]. ACS Applied Materials Interfaces,2012,4(5):2699-2708. doi: 10.1021/am3003439
    [23] Hummers Jr W S, Offeman R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society,1958,80(6):1339-1339. doi: 10.1021/ja01539a017
    [24] Li H, Wu X, Cheng K, et al. Preparation of graphene oxide with large lateral size and graphene/polyimide hybrid film via in situ “molecular welding” strategy[J]. Materials Letters,2019,237:168-171. doi: 10.1016/j.matlet.2018.11.096
    [25] Qian Y, Zhou C, Huang A. Cross-linking modification with diamine monomers to enhance desalination performance of graphene oxide membranes[J]. Carbon,2018,136:28-37. doi: 10.1016/j.carbon.2018.04.062
    [26] Zhang Y, Tan M C. Programmable light-activated gradient materials based on graphene-polymer composites[J]. Advanced Materials Interfaces,2018,5(7):1701374. doi: 10.1002/admi.201701374
    [27] Ma T, Gao H L, Cong H P, et al. A bioinspired interface design for improving the strength and electrical conductivity of graphene-based fibers[J]. Advanced Materials,2018,30(15):e1706435. doi: 10.1002/adma.201706435
    [28] Renteria J D, Ramirez S, Malekpour H, et al. Strongly anisotropic thermal conductivity of free‐standing reduced graphene oxide films annealed at high temperature[J]. Advanced Functional Materials,2015,25(29):4664-4672. doi: 10.1002/adfm.201501429
    [29] Nika D L, Pokatilov E P, Askerov A S, et al. Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering[J]. Physical Review B,2009,79(15):155413. doi: 10.1103/PhysRevB.79.155413
    [30] Li M, Li Z, Liu C, et al. Amino-modification and successive electrochemical reduction of graphene oxide for highly sensitive electrochemical detection of trace Pb2+[J]. Carbon,2016,109:479-486. doi: 10.1016/j.carbon.2016.08.054
    [31] Pandey R P, Thakur A K, Shahi V K. Sulfonated polyimide/acid-functionalized graphene oxide composite polymer electrolyte membranes with improved proton conductivity and water-retention properties[J]. ACS Applied Materials Interfaces,2014,6(19):16993-17002. doi: 10.1021/am504597a
    [32] Roy S, Tang X, Das T, et al. Enhanced molecular level dispersion and interface bonding at low loading of modified graphene oxide to fabricate super nylon 12 composites[J]. ACS Applied Materials Interfaces,2015,7(5):3142-3451.
    [33] Zhuang Y, Seong J G, Lee Y M. Polyimides containing aliphatic/alicyclic segments in the main chains[J]. Progress in Polymer Science,2019,92:35-88. doi: 10.1016/j.progpolymsci.2019.01.004
    [34] Li F, Peng H, Xia D, et al. Highly sensitive, selective, and flexible NO2 chemiresistors based on multilevel structured three-dimensional reduced graphene oxide fiber scaffold modified with aminoanthroquinone moieties and Ag nanoparticles[J]. ACS Applied Materials Interfaces,2019,11(9):9309-9316. doi: 10.1021/acsami.8b20462
    [35] Li D, Zhang B, Zhu C, et al. In-situ growing D-A polymer from the surface of reduced graphene oxide: Synthesis and nonvolatile ternary memory effect[J]. Carbon,2019,143:851-858. doi: 10.1016/j.carbon.2018.11.083
    [36] Dresselhaus M S, Jorio A, Hofmann M, et al. Perspectives on carbon nanotubes and graphene Raman spectroscopy[J]. Nano Letters,2010,10(3):751-758. doi: 10.1021/nl904286r
    [37] Ferrari A C, Basko D M. Raman spectroscopy as a versatile tool for studying the properties of graphene[J]. Nature Nanotechnology,2013,8(4):235-246. doi: 10.1038/nnano.2013.46
    [38] Cancado L G, Takai K, Enoki T, et al. General equation for the determination of the crystallite size L-a of nanographite by Raman spectroscopy[J]. Applied Physics Letters,2006,88(16):163106. doi: 10.1063/1.2196057
    [39] Cançado L G, Takai K, Enoki T, et al. Measuring the degree of stacking order in graphite by Raman spectroscopy[J]. Carbon,2008,46(2):272-275. doi: 10.1016/j.carbon.2007.11.015
    [40] Malard L M, Pimenta M A, Dresselhaus G, et al. Raman spectroscopy in graphene[J]. Physics Reports,2009,473(5-6):51-87. doi: 10.1016/j.physrep.2009.02.003
    [41] Song N J, Chen C M, Lu C, et al. Thermally reduced graphene oxide films as flexible lateral heat spreaders[J]. Journal of Material Chemistry A,2014,2(39):16563-16568. doi: 10.1039/C4TA02693D
    [42] Wu Z, Ban F, Boyd R J. Modeling the reaction mechanisms of the amidehydrolysis in an N-(o-Carboxybenzoyl)-l-amino acid[J]. Journal of the American Chemical Society,2003,125(23):6994-7000. doi: 10.1021/ja021329i
    [43] Liu K, Qi H, Dong R, et al. On-water surface synthesis of crystalline, few-layer two-dimensional polymers assisted by surfactant monolayers[J]. Nature Chemistry,2019,11(11):994-1000. doi: 10.1038/s41557-019-0327-5
    [44] Wu Z, Ban F, Boyd R J. Modeling the reaction mechanisms of the imide formation in an N-(o-Carboxybenzoyl)-l-amino acid[J]. Journal of the American Chemical Society,2003,125(12):3642-3648. doi: 10.1021/ja020700z
  • 加载中
图(7)
计量
  • 文章访问数:  33
  • HTML全文浏览量:  13
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-30
  • 修回日期:  2021-03-22
  • 网络出版日期:  2021-08-31

目录

    /

    返回文章
    返回