留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ultra-thin 2D MoO2 nanosheets coupled with CNTs as efficient separator coating materials to promote the catalytic conversion of lithium polysulfides in advanced lithium-sulfur batteries

KONG Zhen-kai CHEN Yang HUA Jing-zhao ZHANG Yong-zheng ZHAN Liang WANG Yan-li

孔振凯, 陈阳, 华景朝, 张永正, 詹亮, 王艳莉. 二维二氧化钼/碳纳米管隔膜修饰层促进多硫化锂的催化转化[J]. 新型炭材料, 2021, 36(4): 810-820. doi: 10.1016/S1872-5805(21)60080-X
引用本文: 孔振凯, 陈阳, 华景朝, 张永正, 詹亮, 王艳莉. 二维二氧化钼/碳纳米管隔膜修饰层促进多硫化锂的催化转化[J]. 新型炭材料, 2021, 36(4): 810-820. doi: 10.1016/S1872-5805(21)60080-X
KONG Zhen-kai, CHEN Yang, HUA Jing-zhao, ZHANG Yong-zheng, ZHAN Liang, WANG Yan-li. Ultra-thin 2D MoO2 nanosheets coupled with CNTs as efficient separator coating materials to promote the catalytic conversion of lithium polysulfides in advanced lithium-sulfur batteries[J]. NEW CARBON MATERIALS, 2021, 36(4): 810-820. doi: 10.1016/S1872-5805(21)60080-X
Citation: KONG Zhen-kai, CHEN Yang, HUA Jing-zhao, ZHANG Yong-zheng, ZHAN Liang, WANG Yan-li. Ultra-thin 2D MoO2 nanosheets coupled with CNTs as efficient separator coating materials to promote the catalytic conversion of lithium polysulfides in advanced lithium-sulfur batteries[J]. NEW CARBON MATERIALS, 2021, 36(4): 810-820. doi: 10.1016/S1872-5805(21)60080-X

二维二氧化钼/碳纳米管隔膜修饰层促进多硫化锂的催化转化

doi: 10.1016/S1872-5805(21)60080-X
基金项目: 国家自然科学基金(No.51472086, 51002051, U1710252, 50730003, 50672025, 20806024, 22075081)
详细信息
    通讯作者:

    詹 亮,教授. E-mail:zhanliang@ecust.edu.cn

  • 中图分类号: TB33

Ultra-thin 2D MoO2 nanosheets coupled with CNTs as efficient separator coating materials to promote the catalytic conversion of lithium polysulfides in advanced lithium-sulfur batteries

Funds: This work was financially supported by the National Natural Science Foundation of China (No. 51472086, 51002051, U1710252, 50730003, 50672025, 20806024 and 22075081)
More Information
  • 摘要: 严重的穿梭效应和多硫化锂缓慢的反应动力学是阻碍锂硫电池商业化进程的两大主要障碍。本文通过化学气相沉积法合成超薄二维二氧化钼纳米片,并将其与碳纳米管复合作为锂硫电池隔膜修饰层以便解决以上两大问题。二维特性赋予了二氧化钼纳米片丰富的多硫化锂活性吸附位点;在H2/Ar混合气中的部分还原在二氧化钼表面引入了氧空穴,提升了其对多硫化锂转化反应的催化活性。碳纳米管导电网络的构建为持续稳定的多硫化锂反应提供了快速的电荷传递通道。对称电池测试显示二硫化钼/碳纳米管隔膜修饰层有效降低了硫化锂沉积的反应能垒;第一性原理计算进一步证实了其对多硫化锂的强锚定作用。所制锂硫电池展现出出色的循环稳定性,在1 C电流密度下循环800次,容量衰减率仅为每次0.053%。
  • FIG. 785.  FIG. 785.

    FIG. 785.. 

    Figure  1.  (a) SEM image of MoO2 NSs, (b) TEM image of MoO2 NSs, (c) HRTEM image and SAED patterns (insert) of MoO2 NSs, (d) STEM and the corresponding Mo, O mapping images of MoO2 NSs, (e) AFM image of MoO2 NSs and (f) the height profiles corresponding to the solid lines in AFM image.

    Figure  2.  XRD patterns of (a) MoO2 NSs, and (b) CNTs (inserted: HRTEM image of CNTs), high resolution XPS spectra of (c) Mo 3d and (d) O 1s of MoO2 NSs.

    Figure  3.  (a) Schematic of the synthesis of the MoO2/CNT coated separator and its function in LSBs, SEM images of typical (b) top-view and (c) cross-sectional image of the MoO2/CNT modified separator, SEM images of typical (d) top-view and (e) cross-sectional image of the CNT modified separator.

    Figure  4.  (a) Cyclic performance at 0.2 C, (b) rate performance, (c) the corresponding discharge-charge voltage profiles at 0.2 C, (d) CV curves of symmetric dummy cells and (e) long-term cycle performance at 1 C.

    Figure  5.  Optimized structure and binding energies between the (011) plane of MoO2 and Li2Sx.

    Figure  6.  (a, b) SEM images of the CNT-coated separator after discharging, (c-e) SEM images of the 30MoO2/CNT-coated separator after discharging, and (f-i) the corresponding element mapping images of C, Mo, O and S.

    Figure  7.  (a) Full survey XPS spectrum of the 30MoO2/CNT after discharging, high resolution XPS spectra of (b) S 2p, (c) Mo 3d and (d) O 1s.

  • [1] Manthiram A, Chung S H, Zu C X. Lithium-sulfur batteries: progress and prospects[J]. Advanced Materials,2015,27:1980-2006. doi: 10.1002/adma.201405115
    [2] Peng H J, Zhang G, Chen X, et al. Enhanced electrochemical kinetics on conductive polar mediators for lithium-sulfur batteries[J]. Angewandte Chemie International Edition,2016,55:12990-12995. doi: 10.1002/anie.201605676
    [3] Li G R, Lei W, Luo D, et al. 3D Porous carbon sheets with multidirectional ion pathways for fast and durable lithium-sulfur batteries[J]. Advanced Energy Materials,2018,8:1702381. doi: 10.1002/aenm.201702381
    [4] Li G R, Wang S, Zhang Y N, et al. Revisiting the role of polysulfides in lithium-sulfur batteries[J]. Advanced Materials,2018,30:1705590. doi: 10.1002/adma.201705590
    [5] Zhang J H, Huang M, Xi B J, et al. Systematic study of effect on enhancing specific capacity and electrochemical behaviors of lithium-sulfur batteries[J]. Advanced Energy Materials,2018,8:1701330. doi: 10.1002/aenm.201701330
    [6] Bao W Z, Liu L, Wang C G, et al. Facile synthesis of crumpled nitrogen-doped Mxene nanosheets as a new sulfur host for lithium-sulfur batteries[J]. Advanced Energy Materials,2018,8:1702485. doi: 10.1002/aenm.201702485
    [7] Cao Z J, Li B, Yang S B. Dendrite-free lithium anodes with ultra-deep stripping and plating properties based on vertically oriented lithium-copper-lithium arrays[J]. Advanced Materials,2019,31:1901310. doi: 10.1002/adma.201901310
    [8] A Gupta, A Bhargav, A Manthiram. Highly solvating electrolytes for lithium-sulfur batteries[J]. Advanced Energy Materials,2019,9:1803096. doi: 10.1002/aenm.201803096
    [9] Hou T Z, Xu W T, Chen X, et al. Lithium bond chemistry in lithium-sulfur batteries[J]. Angewandte Chemie International Edition,2017,56:8178-8182. doi: 10.1002/anie.201704324
    [10] Zhang R, Chen X, Shen X, et al. Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries[J]. Joule,2018,2:764-777. doi: 10.1016/j.joule.2018.02.001
    [11] Rana M, Li M, Huang X, et al. Recent advances in separators to mitigate technical challenges associated with re-chargeable lithium sulfur batteries[J]. Journal of Materials Chemistry A,2019,7:6596-6615. doi: 10.1039/C8TA12066H
    [12] Zhang Y Z, Xu G X, Kang Q, et al. Synergistic electrocatalysis of polysulfides by a nanostructured VS4-carbon nanofiber functional separator for high-performance lithium-sulfur batteries[J]. Journal of Materials Chemistry A,2019,7:16812-16820. doi: 10.1039/C9TA03516H
    [13] Lei T Y, Chen W, Lv W Q, et al. Inhibiting polysulfide shuttling with a graphene composite separator for highly robust lithium-sulfur batteries[J]. Joule,2018,2:2091-2104. doi: 10.1016/j.joule.2018.07.022
    [14] Song J J, Zhang C Y, Guo X, et al. Entrapping polysulfides by using ultrathin hollow carbon sphere-functionalized separators in high-rate lithium-sulfur batteries[J]. Journal of Materials Chemistry A,2018,6:16610-16616. doi: 10.1039/C8TA04800B
    [15] Kim M S, Ma L, Choudhury S, et al. Multifunctional separator coatings for high-performance lithium-sulfur batteries[J]. Advanced Materials Interfaces,2016,3:1600450. doi: 10.1002/admi.201600450
    [16] Zhou T H, Lv W, Li J, et al. Twinborn TiO2-TiN heterostructures enabling smooth trapping-diffusion-conversion of polysulfides towards ultralong life lithium-sulfur batteries[J]. Energy & Environmental Science,2017,10:1694-1703.
    [17] Song X, Chen G P, Wang S Q, et al. Self-assembled close-packed MnO2 nanoparticles anchored on a polyethylene separator for lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces,2018,10:26274-26282. doi: 10.1021/acsami.8b07663
    [18] Xiao Z B, Li Z L, Li P Y, et al. Ultrafine Ti3C2 Mxene nanodots-interspersed nanosheet for high-energy-density lithium-sulfur batteries[J]. ACS Nano,2019,13:3608-3617. doi: 10.1021/acsnano.9b00177
    [19] Wu J Y, Zeng H X, Li X W, et al. Ultralight layer-by-layer self-assembled MoS2-polymer modified separator for simultaneously trapping polysulfides and suppressing lithium dendrites[J]. Advanced Energy Materials,2018,8:1802430. doi: 10.1002/aenm.201802430
    [20] Wang Z Y, Wang L, Liu S, et al. Conductive CoOOH as carbon-free sulfur immobilizer to fabricate sulfur-based composite for lithium-sulfur battery[J]. Advanced Functional Materials,2019,29:1901051. doi: 10.1002/adfm.201901051
    [21] Sun Z Q, Liao T, Dou Y H, et al. Generalized self-assembly of scalable two-dimensional transition metal oxide nanosheets[J]. Nature Communications,2014,5:3813. doi: 10.1038/ncomms4813
    [22] Liao L, Wang S N, Xiao J J, et al. A nanoporous molybdenum carbide nanowire as an electrocatalyst for hydrogen evolution reaction[J]. Energy & Environmental Science,2014,7:387-392.
    [23] Jia J, Xiong T L, Zhao L L, et al. Ultrathin N-doped Mo2C nanosheets with exposed active sites as efficient electrocatalyst for hydrogen evolution reactions[J]. ACS Nano,2017,11:12509-12518. doi: 10.1021/acsnano.7b06607
    [24] Yao S S, Cui J, Huang J Q, et al. Novel 2D Sb2S3 nanosheet/CNT coupling layer for exceptional polysulfide recycling performance[J]. Advanced Energy Materials,2018,8:1800710. doi: 10.1002/aenm.201800710
    [25] Li R R, Zhou X J, Shen H J, et al. Conductive holey MoO2-Mo3N2 heterojunctions as job-synergistic cathode host with low surface area for high-loading Li-S batteries[J]. ACS Nano,2019,13:10049-10061. doi: 10.1021/acsnano.9b02231
    [26] Zhu Y P, Chen G, Xu X M, et al. Enhancing electrocatalytic activity for hydrogen evolution by strongly coupled molybdenum nitride@nitrogen-doped carbon porous nano-octahedrons[J]. ACS Catalysis,2017,7:3540-3547. doi: 10.1021/acscatal.7b00120
    [27] Merino N A, Barbero B P, Eloy P, et al. La1-xCaxCoO3 perovskite-type oxides: Identification of the surface oxygen species by XPS[J]. Applied Surface Science,2006,253:1489-1493. doi: 10.1016/j.apsusc.2006.02.035
    [28] Su J W, Ge R X, Jiang K M, et al. Assembling ultrasmall copper-doped ruthenium oxide nanocrystals into hollow porous polyhedra: Highly robust electrocatalysts for oxygen evolution in acidic media[J]. Advanced Materials,2018,30:1801351. doi: 10.1002/adma.201801351
    [29] Li X, Yu J Y, Jia J, et al. Confined distribution of platinum clusters on MoO2 hexagonal nanosheets with oxygen vacancies as a high-efficiency electrocatalyst for hydrogen evolution reaction[J]. Nano Energy,2019,62:127-135. doi: 10.1016/j.nanoen.2019.05.013
    [30] Xu Z L, Lin S H, Onofrio N, et al. Exceptional catalytic effects of black phosphorus quantum dots in shuttling-free lithium sulfur batteries[J]. Nature Communications,2018,9:4164. doi: 10.1038/s41467-018-06629-9
    [31] Li L, Chen L, Mukherjee S, et al. Phosphorene as a polysulfide immobilizer and catalyst in high-performance lithium-sulfur batteries[J]. Advanced Materials,2016,29:1602734.
    [32] Lin H B, Yang L Q, Jiang X, et al. Electrocatalysis of polysulfide conversion by sulfur-deficient MoS2 nanoflakes for lithium-sulfur batteries[J]. Energy & Environmental Science,2017,10:1476-1486.
    [33] Fan F Y, Carter W C, Chiang Y M. Mechanism and kinetics of Li2S precipitation in lithium-sulfur batteries[J]. Advanced Materials,2015,27:5203-5209. doi: 10.1002/adma.201501559
    [34] Su Y S, Fu Y Z, Cochell T, et al. A strategic approach to recharging lithium-sulphur batteries for long cycle life[J]. Nature Communications,2013,4:2985. doi: 10.1038/ncomms3985
    [35] Liang X, Kwok C Y, Lodi-Marzano F, et al. Tuning transition metal oxide-sulfur interactions for long life lithium sulfur batteries: The “goldilocks” principle[J]. Advanced Energy Materials,2016,6:1501636. doi: 10.1002/aenm.201501636
    [36] Zheng Y N, Yi Y K, Fan M H, et al. A high-entropy metal oxide as chemical anchor of polysulfide for lithium-sulfur batteries[J]. Energy Storage Materials,2019,23:678-683. doi: 10.1016/j.ensm.2019.02.030
    [37] Kong L, Chen X, Li B Q, et al. A bifunctional perovskite promoter for polysulfide regulation toward stable lithium-sulfur batteries[J]. Advanced Materials,2018,30:1705219. doi: 10.1002/adma.201705219
  • 加载中
图(8)
计量
  • 文章访问数:  157
  • HTML全文浏览量:  71
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-10
  • 修回日期:  2020-10-14
  • 网络出版日期:  2021-07-07
  • 刊出日期:  2021-07-30

目录

    /

    返回文章
    返回