留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Phosphorescent carbon dots: Microstructure design, synthesis and applications

KANG Hai-xin ZHENG Jing-xia LIU Xu-guang YANG Yong-zhen

康海鑫, 郑静霞, 刘旭光, 杨永珍. 磷光碳点的结构设计、合成及其应用[J]. 新型炭材料, 2021, 36(4): 649-664. doi: 10.1016/S1872-5805(21)60083-5
引用本文: 康海鑫, 郑静霞, 刘旭光, 杨永珍. 磷光碳点的结构设计、合成及其应用[J]. 新型炭材料, 2021, 36(4): 649-664. doi: 10.1016/S1872-5805(21)60083-5
KANG Hai-xin, ZHENG Jing-xia, LIU Xu-guang, YANG Yong-zhen. Phosphorescent carbon dots: Microstructure design, synthesis and applications[J]. NEW CARBON MATERIALS, 2021, 36(4): 649-664. doi: 10.1016/S1872-5805(21)60083-5
Citation: KANG Hai-xin, ZHENG Jing-xia, LIU Xu-guang, YANG Yong-zhen. Phosphorescent carbon dots: Microstructure design, synthesis and applications[J]. NEW CARBON MATERIALS, 2021, 36(4): 649-664. doi: 10.1016/S1872-5805(21)60083-5

磷光碳点的结构设计、合成及其应用

doi: 10.1016/S1872-5805(21)60083-5
基金项目: 国家自然科学基金(51972221);山西省回国留学人员科研资助项目(HGKY2019027,2020-051)
详细信息
    通讯作者:

    刘旭光,教授. E-mail:liuxuguang@tyut.edu.cn

    杨永珍,教授. E-mail:yyztyut@126.com

  • 中图分类号: TQ127.1+1

Phosphorescent carbon dots: Microstructure design, synthesis and applications

Funds: National Natural Science Foundation of China (51972221), Shanxi Scholarship Council of China (HGKY2019027, 2020-051)
More Information
  • 摘要: 磷光碳点(CDs)因其具有长寿命、长波长发射、低背景干扰等优点,在能源、信息和生物医学等领域具有较大的潜力。但是,磷光CDs的制备及其发光机理依然面临一些挑战,如:其三重态极易受到外界环境的影响,从而导致磷光猝灭。因此,针对存在的问题,本文首先分析和总结了磷光CDs的起源以及杂元素掺杂、刚性结构和共轭结构等对磷光CDs结构和性能的影响;其次,从一步和两步法两方面综述了其合成方法;再次,归纳了磷光CDs在信息防伪、发光二极管、离子检测和生物成像等方面的应用研究;最后,提出目前仍然存在的问题,并展望了其研究和应用发展方向。
  • FIG. 776.  FIG. 776.

    FIG. 776.. 

    Figure  1.  Diagram of phosphorescence and fluorescence emission process of CDs (Abs: absorption; FL: fluorescence; Phos: phosphorescence).

    Figure  2.  The microstructure design synthesis methods, and applications of RTP CDs.

    Figure  3.  (a) Digital photographs of RTP CDs, (b) phosphorescence excitation spectrum (olive dots) and absorption spectrum of RTP CDs dispersed in water (blue dots)[42], (c) high resolution XPS spectra of RTP CDs, (d) representation of the tunable phosphorescence emission from RTP CDs[44], (e) FTIR spectrum of RTP CDs, (f) high-resolution N1s XPS spectrum of RTP CDs and (g) the UV-Vis diffuse reflectance (red line), PL excitation (PLE) and emission (PL) spectra of RTP CD powder (inset: RTP CDs powder under daylight and UV lamp (365 nm) irradiation)[32]. Reprinted with permission.

    Figure  4.  High resolution XPS spectra of O1s and P2p for RTP CDs[49]. Reprinted with permission.

    Figure  5.  RTP emission spectra of URTP-CDs, EG-CDs and S-CDs powders under excitation of 340 nm[37]. Reprinted with permission.

    Figure  6.  (a) TEM images , (b) HRTEM images of RTP CDs[59], (c) schematic illustration of the possible structural formation of CDs@SiO2[60], (d) schematic of the design strategy of the multi-confined (rigid network, stable covalent bonds, and three-dimensional nano-space) phosphorescence[61], (e) TEM image of CDs@MP dispersion, (f) CDs@MP without matrices[51]and (g) N-doped CDs are embedded into recrystallized molten urea and biuret matrices[47]. Reprinted with permission.

    Figure  7.  (a) Phosphorescence mechanism of N-doped CDs[43], (b) schematic illustration for RTP mechanisms of CDs[64], (c) phosphorescence mechanism of RTP CDs, (d) schematic structure of crosslinking sites, (e) energy level diagrams of single luminescence unit and (f) coupled luminescence units[36]. Reprinted with permission.

    Figure  8.  (a) Schematic illustration of polymer/carbon hybrid structure variation in RTP CDs with increasing the carbonization degree[48], (b) normalized PL of RTP CD powders measured under 360 nm excitation, (c) schematic representation of four different CDs[66], (d) schematic illustration for the synthetic procedure of CDs[64], (e) schematic of the procedure used for the preparation of N-doped CDs[32] and (f) synthesis of N-doped CDs[43]. Reprinted with permission.

    Figure  9.  Schematic of the overall process for fabrication of CDs@SiO2 RTP materials with a ultralong lifetime from rice husks (RHs)[69]. Reprinted with permission.

    Figure  10.  (a) Schematic illustration for the synthetic route of CD-based anticounterfeiting inks[33], (b) a representative diagram of the formation process of the CD-LDH composite[44]. Reprinted with permission.

    Figure  11.  (a−c) Photographs of the inks in quartz cells under daylight and under UV light at 365 nm (Photographs of the printed patterns on papers under excitation at 254, 365 and 450 nm (ON) and after closing the excitation (OFF))[33], (d, e) photographs of the RTP CD-based inks and potential applications[38] and (f) schematic illustration of the time division duplexing based on the RTP CDs and RTP CDs@silica[70]. Reprinted with permission.

    Figure  12.  (a) Emission color coordinates of assembled LEDs[47], (b) emission spectra of the CD-based six WLEDs, (c) photographs of six WLEDs with adjustable CCTs, (d) CIE chromaticity diagram showing the color coordinates of the six WLEDs[66], (e) phosphorescence emission spectra of CDs@LDHs under different oxygen concentrations, (f) plots of I0/I1 as a function of the oxygen concentration[44], (g) phosphorescence spectra of RTP CDs at various calculated concentrations of Fe3+and (h) phosphorescence emission intensity ratio depends on the concentration of the added Fe3+[72]. Reprinted with permission.

    Figure  13.  Photographs of fingerprints on different substrates[69]. Reprinted with permission.

    Table  1.   A summary of the preparation methods and properties of RTP-CDs.

    ApplicationPrecursorMethodRTP CDsLife times (ms)PQY RTP Em (nm)Refs.
    Anti-counterfeiting and information encryption2-Methyl-2,4-pentanediolOne-step hydrothermal
    (180 ℃, 12 h)
    N-doped CDs@PVA22608.7%530[59]
    Folic acid, UreaOne-step hydrothermal
    (260 ℃, 2 h)
    N-doped CDs@urea530500[33]
    Folic acid, UreaOne-step hydrothermal
    (260 ℃, 2 h)
    700500
    o-Phenylenediamine, UreaOne-step hydrothermal
    (180 ℃, 2 h)
    120625
    EthylenediamineHeating (180 ℃, 2 h)N, P-doped CDs1390538[38]
    Ethylenediamine, Phosphoric acidMicrowave (750 W, 130 s)N, P-doped CDs127012.6%520[70]
    WLEDUreaHeating (195 ℃, 10 h)N-doped CDs235520[71]
    Folic acidOne-step hydrothermal
    (260 ℃, 2 h)
    N-doped CDs930490[47]
    Urea, seed CDsHydrothermal reaction
    (180 ℃, 4 h)
    N-doped CDs@PVP419596[66]
    DetectionEthylene diamine tetraacetic acidCalcination method
    (300 ℃, 4 h)
    CDs@LDHs386.8525[44]
    Anhydrous citric acid, Folic acidHydrothermal reaction
    (240 ℃, 4 h)
    N-doped CDs@silica70514%470[72]
    TriethanolamineMicrowave (65 W, 3 min)N, P-doped CDs15.85%518[68]
    Rice husk, EthylenediamineMagnetic stirring
    (180 ℃, 6 h)
    CDs@SiO21620507[69]
    Biological imaging applicationEthylenediamine, Phosphoric acidMicrowave (750 W, 130 s)N-doped CDs186011.6%505[73]
    下载: 导出CSV
  • [1] Yan Z Y, Xiao A, Lu H, et al. Determination of metronidazole by a flow-injection chemiluminescence method using ZnO-doped carbon quantum dots[J]. New Carbon Materials,2014,29(3):216-224. doi: 10.1016/S1872-5805(14)60136-0
    [2] Lu H, Shan X H. Preparation of carbon quantum dots in wood charcoal and their interaction with bovine serum albumin[J]. New Carbon Materials,2013,28(4):307.
    [3] Zhu S J, Song Y B, Zhao X H, et al. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective[J]. Nano Research,2015,8(2):355-381. doi: 10.1007/s12274-014-0644-3
    [4] Cai T T, Liu B, Pang E N, et al. A review on the preparation and applications of coal-based fluorescent carbon dots[J]. New Carbon Materials,2020,35(6):646-666. doi: 10.1016/S1872-5805(20)60520-0
    [5] Kou X L, Jiang S C, Park S J, et al. A review: Recent advances in preparations and applications of heteroatom-doped carbon quantum dots[J]. Dalton Transactions,2020,49(21):6915-6938. doi: 10.1039/D0DT01004A
    [6] Lv C X, Li L P. Progress in research on the preparation of carbon dots and their use in tumor theranostics[J]. New Carbon Materials,2018,33(1):12-18.
    [7] Vieira K O, Bettini J, de Oliveira L F C, et al. Synthesis of multicolor photoluminescent carbon quantum dots functionalized with hydrocarbons of different chain lengths[J]. New Carbon Materials,2017,32(4):327-337. doi: 10.1016/S1872-5805(17)60126-4
    [8] Wang Y, Wu W T, Wu M B, et al. Yellow-visual fluorescent carbon quantum dots from petroleum coke for the efficient detection of Cu2+ ions[J]. New Carbon Materials,2015,30(6):550-559. doi: 10.1016/S1872-5805(15)60204-9
    [9] Xu X Y, Ray R, Gu Y L, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[J]. Journal of the American Chemical Society,2004,126(40):12736-12737. doi: 10.1021/ja040082h
    [10] Xia C L, Zhu S J, Feng T L, et al. Evolution and synthesis of carbon dots: from carbon dots to carbonized polymer dots[J]. Advanced Science,2019,6(23):1901316. doi: 10.1002/advs.201901316
    [11] Wang X, Cao L, Lu F S, et al. Photoinduced electron transfers with carbon dots[J]. Chemical Communications,2009(25):3774-3776. doi: 10.1039/b906252a
    [12] Zhao Q L, Zhang Z L, Huang B H, et al. Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite[J]. Chemical Communications,2008(41):5116-5118. doi: 10.1039/b812420e
    [13] Zhang Y T, Zhang K B, Jia K L, et al. Preparation of coal-based graphene quantum dots/α-Fe2O3 nanocomposites and their lithium-ion storage properties[J]. Fuel,2019,241:646-652. doi: 10.1016/j.fuel.2018.12.030
    [14] Gonçalves H, Jorge P A S, Fernandes J R A, et al. Hg (II) sensing based on functionalized carbon dots obtained by direct laser ablation[J]. Sensors and Actuators B: Chemical,2010,145(2):702-707. doi: 10.1016/j.snb.2010.01.031
    [15] Kaczmarek A, Hoffman J, Morgiel J, et al. Luminescent carbon dots synthesized by the laser ablation of graphite in polyethylenimine and ethylenediamine[J]. Materials,2021,14(4):729. doi: 10.3390/ma14040729
    [16] Athanasios B B, Andreas S, Demetrios A, et al. Photoluminescent carbogenic dots[J]. Chemistry of Materials,2008,20(14):4539-4541. doi: 10.1021/cm800506r
    [17] Liu Y, Xiao N, Gong N Q, et al. One-step microwave-assisted polyol synthesis of green luminescent carbon dots as optical nanoprobes[J]. Carbon,2014(68):258-264.
    [18] Laptinskiy K A, Burikov S A, Chugreeva G N, et al. The influence of the type of ions hydration on photoluminescence of carbon dots in aqueous suspensions[J]. Fullerenes, Nanotubes and Carbon Nanostructures,2021,29(1):67-73. doi: 10.1080/1536383X.2020.1811236
    [19] Song Y B, Zhu S J, Yang B. Bioimaging based on fluorescent carbon dots[J]. RSC Advances,2014,4(52):27184-27200. doi: 10.1039/c3ra47994c
    [20] Zhang H Y, Liu J C, Wang B L, et al. Zeolite-confined carbon dots: tuning thermally activated delayed fluorescence emission via energy transfer[J]. Materials Chemistry Frontiers,2020,4(5):1404-1410. doi: 10.1039/C9QM00549H
    [21] Yuan F L, Li S H, Fan Z T, et al. Shining carbon dots: Synthesis and biomedical and optoelectronic applications[J]. Nano Today,2016,11(5):565-586. doi: 10.1016/j.nantod.2016.08.006
    [22] Jia H R, Wang, Z B, Yuan T, et al. Electroluminescent warm white light-emitting diodes based on passivation enabled bright red bandgap emission carbon quantum dots[J]. Advanced Science,2019,6(13):1900397. doi: 10.1002/advs.201900397
    [23] Liu M L, Chen B B, Li C M, et al. Carbon dots: synthesis, formation mechanism, fluorescence origin and sensing applications[J]. Green Chemistry,2019,21(3):449-471. doi: 10.1039/C8GC02736F
    [24] Zhang F, Feng X T, Zhang Y, et al. Photoluminescent carbon quantum dots as a directly film-forming phosphor towards white LEDs[J]. Nanoscale,2016,8(16):8618-8632. doi: 10.1039/C5NR08838K
    [25] Zheng J X, Liu X H, Yang Y Z, et al. Rapid and green synthesis of fluorescent carbon dots from starch for white light-emitting diodes[J]. New Carbon Materials,2018,33(3):276-288. doi: 10.1016/S1872-5805(18)60339-7
    [26] Wei J M, Liu B T, Zhang X, et al. One-pot synthesis of N, S co-doped photoluminescent carbon quantum dots for Hg2+ ion detection[J]. New Carbon Materials,2018,33(4):333-340. doi: 10.1016/S1872-5805(18)60343-9
    [27] Yue L J, Wei Y Y, Fan J B, et al. Research progress in the use of cationic carbon dots for the integration of cancer diagnosis with gene treatment[J]. New Carbon Materials,2021,36(2):373-389. doi: 10.1016/S1872-5805(21)60025-2
    [28] Zhao F F, Zhang T Y, Liu Q, et al. Phen-derived N-doped white-emitting carbon dots with room temperature phosphorescence for versatile applications[J]. Sensors and Actuators B-Chemical,2020(304):127344.
    [29] Xu Z G, Sun X B, Ma P P, et al. A visible-light-excited afterglow achieved by carbon dots from rhodamine B fixed in boron oxide[J]. Journal of Materials Chemistry C,2020,8(13):4557-4563. doi: 10.1039/C9TC05992J
    [30] Diaz-Torres L A, Gomez-Solis C, Oliva J, et al. Long-lasting green, yellow, and red phosphorescence of carbon dots embedded on ZnAl2O4 nanoparticles synthesized by a combustion method[J]. Journal of Physics D: Applied Physics,2018,51(41):415104. doi: 10.1088/1361-6463/aadbda
    [31] Zhang Z Y, Xu W W, Xu W S, et al. A synergistic enhancement srategy for realizing ultralong and efficient room-temperature phosphorescence[J]. Angewandte Chemie,2020,132(42):18907-18913. doi: 10.1002/ange.202008516
    [32] Li H, Ye S, Guo J Q, et al. The design of room-temperature-phosphorescent carbon dots and their application as a security ink[J]. Journal of Materials Chemistry C,2019,7(34):10605-10612. doi: 10.1039/C9TC03481A
    [33] Lin C J, Zhuang Y X, Li W H, et al. Blue, green, and red full-color ultralong afterglow in nitrogen-doped carbon dots[J]. Nanoscale,2019,11(14):6584-6590. doi: 10.1039/C8NR09672D
    [34] Long P, Feng Y Y, Cao C, et al. Self-protective room-temperature phosphorescence of fluorine and nitrogen codoped carbon dots[J]. Advanced Functional Materials,2018,28(37):1800791. doi: 10.1002/adfm.201800791
    [35] An Z F, Zheng C, Tao Y, et al. Stabilizing triplet excited states for ultralong organic phosphorescence[J]. Nature Materials,2015,14 (7):685-690. doi: 10.1038/nmat4259
    [36] Tao S Y, Lu S Y, Geng Y J, et al. Design of metal-free polymer carbon dots: a new class of room-temperature phosphorescent materials[J]. Angewandte Chemie International Edition,2018,57(9):2393-2398. doi: 10.1002/anie.201712662
    [37] Jiang K, Wang Y H, Gao X L, et al. Facile, quick, and gram-scale synthesis of ultralong-lifetime room temperature-phosphorescent carbon dots by microwave irradiation[J]. Angewandte Chemie International Edition,2018,57(21):6216-6220. doi: 10.1002/anie.201802441
    [38] Jiang K, Wang Y H, Cai C Z, et al. Conversion of carbon dots from fluorescence to ultralong room-temperature phosphorescence by heating for security applications[J]. Advance Materials,2018,30 (26):1800783. doi: 10.1002/adma.201800783
    [39] Li Q J, Zhou M, Yang M Y, et al. Induction of long-lived room temperature phosphorescence of carbon dots by water in hydrogen-bonded matrices[J]. Nature Communications,2018,9(1):1-8. doi: 10.1038/s41467-017-02088-w
    [40] Hu C, Li M Y, Qiu J S, et al. Design and fabrication of carbon dots for energy conversion and storage[J]. Chemical Society Reviews,2019,48(8):2315-2337. doi: 10.1039/C8CS00750K
    [41] Liu K K, Song S Y, Sui L Z, et al. Efficient eed/near-infrared-emissive carbon nanodots with multiphoton excited upconversion fluorescence[J]. Advanced Science,2019,6(17):1900766. doi: 10.1002/advs.201900766
    [42] Deng Y H, Zhao D X, Chen X, et al. Long lifetime pure organic phosphorescence based on water soluble carbon dots[J]. Chemical Communications,2013,49(51):5751-5753. doi: 10.1039/c3cc42600a
    [43] Gao Y F, Han H, Lu W J, et al. Matrix-free and highly efficient room-temperature phosphorescence of nitrogen-doped carbon dots[J]. Langmuir,2018,34(43):12845-12852. doi: 10.1021/acs.langmuir.8b00939
    [44] Bai L Q, Xue N, Wang X R, et al. Activating efficient room temperature phosphorescence of carbon dots by synergism of orderly non-noble metals and dual structural confinements[J]. Nanoscale,2017,9(20):6658-6664. doi: 10.1039/C6NR09648D
    [45] Wu M B, Wang Y, Wu W T, et al. Preparation of functionalized water-soluble photoluminescent carbon quantum dots from petroleum coke[J]. Carbon,2014,78:480-489. doi: 10.1016/j.carbon.2014.07.029
    [46] Wu W T, Zhan L Y, Fan W Y, et al. Cu–N dopants boost electron transfer and photooxidation reactions of carbon dots[J]. Angewandte Chemie,2015,127(22):6640-6644. doi: 10.1002/ange.201501912
    [47] Li Q J, Zhou M, Qing F, et al. Efficient room-temperature phosphorescence from nitrogen-doped carbon dots in composite matrices[J]. Chemistry of Materials,2016,28(22):8221-8227. doi: 10.1021/acs.chemmater.6b03049
    [48] Xia C L, Zhu S J, Zhang S T, et al. Carbonized polymer dots with tunable room-temperature phosphorescence lifetime and wavelength[J]. ACS Applied Materials & Interfaces,2020,12(34):38593-38601.
    [49] Qi H T, Zhang H Q, Wu X M, et al. Matrix-free and highly efficient room-temperature phosphorescence of carbon dots towards information encryption and decryption[J]. Chemistry-an Asian Journal,2020,15 (8):1281-1284. doi: 10.1002/asia.202000063
    [50] Feng Q, Xie Z G, Zheng M, et al. Colour-tunable ultralong-lifetime room temperature phosphorescence with external heavy-atom effect in boron-doped carbon dots[J]. Chemical Engineering Journal,2020:127647. doi: 10.1016/j.cej.2020.127647
    [51] Wang C, Chen Y Y, Xu Y L, et al. Aggregation induced room-temperature phosphorescence obtained from water dispersible carbon dots-based composite materials[J]. ACS Applied Materials & Interfaces,2020,12(9):10791-10800.
    [52] Sun X B, Zhao J R, Wang X Y, et al. The phosphorescence property of carbon dots presenting as powder, embedded in filter paper and dispersed in solid solution[J]. Journal of Luminescence,2020,218:116851. doi: 10.1016/j.jlumin.2019.116851
    [53] Tan J, Yi Z Z, Ye Y X, et al. Achieving red room temperature afterglow carbon dots in composite matrices through chromophore conjugation degree controlling[J]. Journal of Luminescence,2020,223:117267. doi: 10.1016/j.jlumin.2020.117267
    [54] Wang Z F, Shen J, Sun J, et al. Ultralong-lived room temperature phosphorescence from N and P codoped self-protective carbonized polymer dots for confidential information encryption and decryption[J]. Journal of Materials Chemistry C,2021,9(14):4847-4853. doi: 10.1039/D0TC05845A
    [55] Jiang K, Zhang L, Lu J F, et al. Triple-mode emission of carbon dots: applications for advanced anti-counterfeiting[J]. Angewandte Chemie International Edition,2016,55(25):7231-7235. doi: 10.1002/anie.201602445
    [56] Tan J, Zhang J, Li W, et al. Synthesis of amphiphilic carbon quantum dots with phosphorescence properties and their multifunctional applications[J]. Journal of Materials Chemistry C,2016,4(42):10146-10153. doi: 10.1039/C6TC03027K
    [57] Jiang K, Wang Y H, Cai C Z, et al. Activating room temperature long afterglow of carbon dots via covalent fixation[J]. Chemistry of Materials,2017,29(11):4866-4873. doi: 10.1021/acs.chemmater.7b00831
    [58] Dong X W, Wei L M, Su Y J, et al. Efficient long lifetime room temperature phosphorescence of carbon dots in a potash alum matrix[J]. Journal of Materials Chemistry C,2015,3(12):2798-2801. doi: 10.1039/C5TC00126A
    [59] Li W, Zhou W, Zhou Z S, et al. A universal strategy for activating the multicolor room-temperature afterglow of carbon dots in a boric acid matrix[J]. Angewandte Chemie,2019,58(22):7278-7283. doi: 10.1002/anie.201814629
    [60] Li W, Wu S S, Xu X K, et al. Carbon dot-silica nanoparticle composites for ultralong lifetime phosphorescence imaging in tissue and cells at room temperature[J]. Chemistry of Materials,2019,31(23):9887-9894. doi: 10.1021/acs.chemmater.9b04120
    [61] Sun Y Q, Liu S T, Sun L Y, et al. Ultralong lifetime and efficient room temperature phosphorescent carbon dots through multi-confinement structure design[J]. Nature Communications,2020,11(1):1-11. doi: 10.1038/s41467-019-13993-7
    [62] Wang T, Su X G, Zhang X P, et al. Aggregation-induced dual-phosphorescence from organic molecules for nondoped light-emitting diodes[J]. Advanced Materials,2019,31(51):1904273. doi: 10.1002/adma.201904273
    [63] Sathish V, Ramdass A, Thanasekaran P, et al. Aggregation-induced phosphorescence enhancement (AIPE) based on transition metal complexes—An overview[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews,2015,23:25-44. doi: 10.1016/j.jphotochemrev.2015.04.001
    [64] Gao Y F, Zhang H L, Shuang S M, et al. Visible-light-excited ultralong-lifetime room temperature phosphorescence based on nitrogen-doped carbon dots for double anticounterfeiting[J]. Advanced Optical Materials,2020,8(7):1901557. doi: 10.1002/adom.201901557
    [65] Chang J W, Song X D, Yu C, et al. Gravity field-mediated synthesis of carbon-conjugated quantum dots with tunable defective density for enhanced triiodide reduction[J]. Nano Energy,2020,69:104377. doi: 10.1016/j.nanoen.2019.104377
    [66] Zhu J Y, Bai X, Chen X, et al. Spectrally tunable solid state fluorescence and roomtemperature phosphorescence of carbon dots synthesized via seeded growth method[J]. Advanced Optical Materials,2019,7(9):1801599. doi: 10.1002/adom.201801599
    [67] Chen Y H, He J L, Hu C F, et al. Room temperature phosphorescence from moisture-resistant and oxygen-barred carbon dot aggregates[J]. Journal of Materials Chemistry C,2017,5(25):6243-6250. doi: 10.1039/C7TC01615H
    [68] Su Q, Lu C S, Yang X M, et al. Efficient room temperature phosphorescence carbon dots: Information encryption and dual-channel pH sensing[J]. Carbon,2019,152:609-615. doi: 10.1016/j.carbon.2019.06.061
    [69] Sun Y Q, Liu J K, Pang X L, et al. Temperature-responsive conversion of thermal activated delayed fluorescence and room temperature phosphorescence of carbon dots in silica[J]. Journal of Materials Chemistry C,2020,8(17):5744-5751. doi: 10.1039/D0TC00507J
    [70] Liang Y C Liu K K, Wu X Y, et al. Lifetime-engineered carbon nanodots for time division duplexing[J]. Advanced Science,2021,8(6):2003433. doi: 10.1002/advs.202003433
    [71] Yuan T, Yuan F L, Li X H, et al. Fluorescence-phosphorescence dual emissive carbon nitride quantum dots scores 25% white emission efficiency enabling single-component WLEDs[J]. Chemical Science,2019,10(42):9801-9806. doi: 10.1039/C9SC03492G
    [72] Tan J, Ye Y X, Ren X D, et al. High pH-induced efficient room-temperature phosphorescence from carbon dots in hydrogen-bonded matrices[J]. Journal of Materials Chemistry C,2018,6(29):7890-7895. doi: 10.1039/C8TC02012D
    [73] Liang Y C, Gou S S, Liu K K, et al. Ultralong and efficient phosphorescence from silica confined carbon nanodots in aqueous solution[J]. Nano Today,2020,34:100900. doi: 10.1016/j.nantod.2020.100900
    [74] Cui B, Feng X T, Zhang F, et al. The use of carbon quantum dots as fluorescent materials in white LEDs[J]. New Carbon Materials,2017,32(5):385-401. doi: 10.1016/S1872-5805(17)60130-6
    [75] Zhu J Y, Bai X, Zhai X, et al. Carbon dots with efficient solid-state photoluminescence towards white light-emitting diodes[J]. Journal of Materials Chemistry C,2017,5(44):11416-11420. doi: 10.1039/C7TC04155A
    [76] Wang Z F, Yuan F L, Li X H, et al. 53% efficient red emissive carbon quantum dots for high color rendering and stable warm white-light-emitting diodes[J]. Advanced Materials,2017,29(37):1702910. doi: 10.1002/adma.201702910
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  241
  • HTML全文浏览量:  75
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-20
  • 修回日期:  2021-07-08
  • 网络出版日期:  2021-07-07
  • 刊出日期:  2021-07-30

目录

    /

    返回文章
    返回