留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维B、N掺杂炭片的电化学氧化及其赝电容性能

胡友仁 董晓玲 侯璐 庄洪坤 李文翠

胡友仁, 董晓玲, 侯璐, 庄洪坤, 李文翠. 二维B、N掺杂炭片的电化学氧化及其赝电容性能[J]. 新型炭材料, 2021, 36(6): 1109-1117. doi: 10.1016/S1872-5805(21)60084-7
引用本文: 胡友仁, 董晓玲, 侯璐, 庄洪坤, 李文翠. 二维B、N掺杂炭片的电化学氧化及其赝电容性能[J]. 新型炭材料, 2021, 36(6): 1109-1117. doi: 10.1016/S1872-5805(21)60084-7
HU You-ren, DONG Xiao-ling, HOU Lu, ZHUANG Hong-kun, LI Wen-cui. Electrochemical oxidation of 2D B, N-codoped carbon nanosheets to improve their pseudo-capacitance[J]. NEW CARBON MATERIALS, 2021, 36(6): 1109-1117. doi: 10.1016/S1872-5805(21)60084-7
Citation: HU You-ren, DONG Xiao-ling, HOU Lu, ZHUANG Hong-kun, LI Wen-cui. Electrochemical oxidation of 2D B, N-codoped carbon nanosheets to improve their pseudo-capacitance[J]. NEW CARBON MATERIALS, 2021, 36(6): 1109-1117. doi: 10.1016/S1872-5805(21)60084-7

二维B、N掺杂炭片的电化学氧化及其赝电容性能

doi: 10.1016/S1872-5805(21)60084-7
基金项目: 国家自然科学基金(222075038,21875028);辽宁省兴辽英才计划(XLYC1902045).
详细信息
    作者简介:

    胡友仁,硕士研究生. E-mail:xshyr@mail.dlut.edu.cn

    通讯作者:

    李文翠,博士,教授. E-mail:wencuili@dlut.edu.cn

  • 中图分类号: TQ152

Electrochemical oxidation of 2D B, N-codoped carbon nanosheets to improve their pseudo-capacitance

Funds: National Natural Science Foundation of China (222075038, 21875028); Liao Ning Revitalization Talents Program (XLYC1902045).
More Information
  • 摘要: 在炭基电极材料中引入氧化还原赝电容是提升其比电容的有效手段,有望解决炭基超级电容器低能量密度的瓶颈。本文通过原位电化学氧化,在B、N掺杂二维纳米炭片电极上引入电化学活性含氧官能团,以显著提升炭基电极的赝电容,并研究了B、N掺杂炭在不同氧化工艺下的表面组成和电容性能变化。结果表明,B、N掺杂可以提升氧化电极的电子传输和电荷转移,有效促进电化学氧化效果,提高电极的赝电容。此外,相比于恒压氧化工艺,循环伏安氧化方法可以有效提升炭电极的氧化深度和总氧含量,并且也有利于选择性地生成以电化学活性的醌基为主的含氧官能团。制备的氧化电极在1 A·g−1电流密度下显示出601.5 F·g−1的高比电容,并在20 A·g−1下仍保持74.8%,显示出良好的倍率性能。此外,氧化电极还表现出优异的循环稳定性,在5 A·g−1下8000次循环后保持了初始电容的92.6%。
  • FIG. 1078.  FIG. 1078.

    FIG. 1078..  FIG. 1078.

    图  1  BNCS的(a)合成示意图及(b-c)SEM、(d)TEM照片

    Figure  1.  (a) The schematic diagram of synthesis and (b-c) SEM, (d) TEM images of BNCS.

    图  2  (a)循环伏安氧化、(b)恒压氧化、(c)恒压-循环伏安组合氧化的E-t曲线和I-t曲线

    Figure  2.  E-t curves and I-t curves of (a) cyclic voltammetry oxidation, (b) constant potential oxidation and (c) combination of constant potential and cyclic voltammetry oxidation.

    图  3  不同氧化条件制备的BNCS氧化电极在三电极体系下的1 mol L−1 H2SO4中的电化学测试:BNCS-CV-5、BNCS-CV-10、BNCS-CV-20氧化电极(a) 在10 mV·s−1下的CV曲线、(b) 1 A·g−1下的GC曲线和(c) 电化学阻抗谱;BNCS-CP-10、BNCS-CP-30和BNCS-CB-10*3氧化电极(d) 在10 mV·s−1下的CV曲线和(e) 1 A·g−1下的GC曲线和(f) 电化学阻抗谱

    Figure  3.  Electrochemical evaluation of oxidized BNCS electrodes prepared under different oxidation conditions measured in a three-electrode system in 1 mol L−1 H2SO4: (a) CV curves at 10 mV·s−1, (b) GC curves at 1 A·g−1 and (c) EIS curves of BNCS-CV-5, BNCS-CV-10 and BNCS-CV-20 electrodes; (d) CV curves at 10 mV·s−1, (e) GC curves at 1 A·g−1 and (f) EIS curves of BNCS-CP-10, BNCS-CP-30 and BNCS-CB-10*3 electrodes.

    图  4  CS-CV-5氧化电极和BNCS电极在三电极体系下1 mol L−1 H2SO4中的电化学测试:(a) 10 mV·s−1的CV曲线;(b) 1 A·g−1下的GC曲线;(c) 电化学阻抗谱;

    Figure  4.  Electrochemical evaluation of CS-CV-5 and BNCS electrodes measured in a three-electrode system in 1 mol L−1 H2SO4: (a) CV curves at 10 mV·s−1, (b) GC curves at 1 A·g−1, (c) EIS curves.

    图  5  BNCS、BNCS-CV-10和BNCS-CP-30的(a) FTIR、(b) XPS全谱和XPS (c) C 1s、(d) O 1s、(e) N 1s分峰拟合图谱

    Figure  5.  (a) FTIR spectra, (b) XPS spectra, as well as high-resolution XPS spectra of (c) C 1s, (d) O 1s and (e) N 1s of the BNCS-5, AC-2-5-5, AC-2-20-5 and AC electrodes.

    图  6  氧化电极在三电极体系下1 mol L−1 H2SO4中的倍率与循环测试:(a) BNCS-CV-10和BNCS-CP-30电极0.5~20 A·g−1下的倍率性能测试;(b) BNCS-CV-10电极在5 A·g−1下的循环稳定性测试

    Figure  6.  Rate and cycling tests of oxidized electrodes measured in a three-electrode system in 1 mol L−1 H2SO4:(a) Rate performances of BNCS-CV-10 and BNCS-CP-30 electrodes from 0.5 to 20 A·g−1. (b) Cycling performance of BNCS-CV-10 electrode at 5 A·g−1.

    表  1  BNCS、BNCS-CV-10和BNCS-CP-30电极元素分析与XPS表征测定的元素含量

    Table  1.   Elemental contents of the BNCS, BNCS-CV-10 and BNCS-CP-30 electrodes obtained by elemental analysis and XPS.

    SampleElemental analysis (wt.%)XPS (at.%)
    CHNOCBNOF
    BNCS90.21.21.27.480.851.453.417.097.2
    BNCS-CV-1083.11.01.114.970.980.513.9717.966.58
    BNCS-CP-3085.40.91.212.673.580.62.7716.276.77
    下载: 导出CSV

    表  2  BNCS、BNCS-CV-10和BNCS-CP-30电极C 1s、O 1s、N 1s分峰拟合结果中各类官能团相对含量

    Table  2.   The relative contents of functional groups of the BNCS, BNCS-CV-10 and BNCS-CP-30 electrodes calculated by the XPS C 1s, O 1s, N 1s fitting peak area.

    SampleC 1s/at. %O 1s/at. %N 1s/at. %
    ―COOHC=OC―O/C―N―COOHC―OHC=ON―QN―5N―6
    BNCS3.82.715.132.87.259.921.337.840.9
    BNCS-CV-106.67.415.329.021.449.614.778.46.9
    BNCS-CP-307.64.218.340.938.021.116.071.013.0
    下载: 导出CSV
  • [1] Choudhary N, Li C, Moore J, Nagaiah N, et al. Asymmetric supercapacitor electrodes and devices[J]. Advanced Materials,2017,29(21):1605336. doi: 10.1002/adma.201605336
    [2] Raza W, Ali F Z, Raza N, et al. Recent advancements in supercapacitor technology[J]. Nano Energy,2018,52:441-473. doi: 10.1016/j.nanoen.2018.08.013
    [3] Nomura K, Nishihara H, Kobayashi N, et al. 4.4 V supercapacitors based on super-stable mesoporous carbon sheet made of edge-free graphene walls[J]. Energy & Environmental Science,2019,12(5):1542-1549.
    [4] Borenstein A, Hanna O, Attias R, et al. Carbon-based composite materials for supercapacitor electrodes: a review[J]. Journal of Materials Chemistry A,2017,5(25):12653-12672. doi: 10.1039/C7TA00863E
    [5] Chen X L, Paul R, Dai L M. Carbon-based supercapacitors for efficient energy storage[J]. National Science Review,2017,4(3):453-489. doi: 10.1093/nsr/nwx009
    [6] Fleischmann S, Mitchell J B, Wang R C, et al. Pseudocapacitance: from fundamental understanding to high power energy storage materials[J]. Chemical Reviews,2020,120(14):6738-6782. doi: 10.1021/acs.chemrev.0c00170
    [7] Lee J S M, Briggs M E, Hu C C, et al. Controlling electric double-layer capacitance and pseudocapacitance in heteroatom-doped carbons derived from hypercrosslinked microporous polymers[J]. Nano Energy,2018,46:277-289. doi: 10.1016/j.nanoen.2018.01.042
    [8] Li Z, Xu Z W, Wang H L, et al. Colossal pseudocapacitance in a high functionality-high surface area carbon anode doubles the energy of an asymmetric supercapacitor[J]. Energy & Environmental Science,2014,7(5):1708-1718.
    [9] Xu Z X, Zhuang X D, Yang C Q, et al. Nitrogen-doped porous carbon superstructures derived from hierarchical assembly of polyimide nanosheets[J]. Advanced Materials,2016,28(10):1981-1987. doi: 10.1002/adma.201505131
    [10] Enterria M, Pereira M F R, Martins J I, et al. Hydrothermal functionalization of ordered mesoporous carbons: The effect of boron on supercapacitor performance[J]. Carbon,2015,95:72-83. doi: 10.1016/j.carbon.2015.08.009
    [11] Lin T Q, Chen I W, Liu F X, et al. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage[J]. Science,2015,350(6267):1508-1513. doi: 10.1126/science.aab3798
    [12] Zhang Y, Qu T T, Xiang K, et al. In situ formation/carbonization of quinone-amine polymers towards hierarchical porous carbon foam with high faradaic activity for energy storage[J]. Journal of Materials Chemistry A,2018,6(5):2353-2359. doi: 10.1039/C7TA09644E
    [13] Song Z Y, Miao L, Li L C, et al. A universal strategy to obtain highly redox-active porous carbons for efficient energy storage[J]. Journal of Materials Chemistry A,2020,8(7):3717-3725. doi: 10.1039/C9TA13520K
    [14] Zhou M, Li X Y, Zhao H, et al. Combined effect of nitrogen and oxygen heteroatoms and micropores of porous carbon frameworks from Schiff-base networks on their high supercapacitance[J]. Journal of Materials Chemistry A,2018,6(4):1621-1629. doi: 10.1039/C7TA08366A
    [15] Wang Y G, Song Y F, Xia Y Y. Electrochemical capacitors: mechanism, materials, systems, characterization and applications[J]. Chemical Society Reviews,2016,45(21):5925-5950. doi: 10.1039/C5CS00580A
    [16] Liu B, Liu Y J, Chen H B, et al. Oxygen and nitrogen co-doped porous carbon nanosheets derived from perilla frutescens for high volumetric performance supercapacitors[J]. Journal of Power Sources,2017,341:309-317. doi: 10.1016/j.jpowsour.2016.12.022
    [17] Sanchez-Sanchez A, Izquierdo M T, Mathieu S, et al. Outstanding electrochemical performance of highly N- and O-doped carbons derived from pine tannin[J]. Green Chemistry,2017,19(11):2653-2665. doi: 10.1039/C7GC00491E
    [18] Liu M R, Zhang K J, Si M Y, et al. Three-dimensional carbon nanosheets derived from micro-morphologically regulated biomass for ultrahigh-performance supercapacitors[J]. Carbon,2019,153:707-716. doi: 10.1016/j.carbon.2019.07.060
    [19] Park J H, Lee H J, Cho J Y, et al. Highly exfoliated and functionalized single-walled carbon nanotubes as fast-charging, high-capacity cathodes for rechargeable lithium-ion batteries[J]. ACS Applied Material & Interfaces,2020,12(1):1322-1329.
    [20] Liu T Y, Davijani A A B, Sun J Y, et al. Hydrothermally oxidized single-walled carbon nanotube networks for high volumetric electrochemical energy storage[J]. Small,2016,12(25):3423-3431. doi: 10.1002/smll.201600974
    [21] Tabti Z, Ruiz-Rosas R, Quijada C, et al. Tailoring the surface chemistry of activated carbon cloth by electrochemical methods[J]. ACS Applied Material & Interfaces,2014,6(14):11682-11691.
    [22] Wang W, Liu W Y, Zeng Y X, et al. A novel exfoliation strategy to significantly boost the energy storage capability of commercial carbon cloth[J]. Advanced Materials,2015,27(23):3572-3578. doi: 10.1002/adma.201500707
    [23] Berenguer R, Nishihara H, Itoi H, et al. Electrochemical generation of oxygen-containing groups in an ordered microporous zeolite-templated carbon[J]. Carbon,2013,54:94-104. doi: 10.1016/j.carbon.2012.11.007
    [24] Berenguer R, Marco-Lozar J P, Quijada C, et al. A comparison between oxidation of activated carbon by electrochemical and chemical treatments[J]. Carbon,2012,50(3):1123-1134. doi: 10.1016/j.carbon.2011.10.025
    [25] Wang Y, Chang Z, Zhang Z C, et al. A facile approach to improve electrochemical capacitance of carbons by in situ electrochemical oxidation[J]. ACS Applied Material & Interfaces,2019,11(6):5999-6008. doi: 10.1021/acsami.8b19071
    [26] Hu Y R, Dong X L, Zhuang H K, et al. Introducing electrochemically active oxygen species to boost the pseudocapacitance of carbon-based supercapacitor[J]. ChemElectroChem,2021,8(16):3073-3079. doi: 10.1002/celc.202100641
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  238
  • HTML全文浏览量:  139
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-04
  • 修回日期:  2021-06-28
  • 网络出版日期:  2021-07-16
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回