留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A comprehensive review of three-dimensional graphene for thermal management and electromagnetic protection

JIA Hui LIANG Lei-Lei LIU Dong WANG Zheng LIU Zhuo XIE Li-Jing TAO Ze-Chao KONG Qing-Qiang CHEN Cheng-Meng

贾辉, 梁磊磊, 刘冬, 王正, 刘卓, 谢莉婧, 陶则超, 孔庆强, 陈成猛. 3D石墨烯在热管理及电磁防护应用中的研究进展[J]. 新型炭材料. doi: 10.1016/S1872-5805(21)60088-4
引用本文: 贾辉, 梁磊磊, 刘冬, 王正, 刘卓, 谢莉婧, 陶则超, 孔庆强, 陈成猛. 3D石墨烯在热管理及电磁防护应用中的研究进展[J]. 新型炭材料. doi: 10.1016/S1872-5805(21)60088-4
JIA Hui, LIANG Lei-Lei, LIU Dong, WANG Zheng, LIU Zhuo, XIE Li-Jing, TAO Ze-Chao, KONG Qing-Qiang, CHEN Cheng-Meng. A comprehensive review of three-dimensional graphene for thermal management and electromagnetic protection[J]. NEW CARBON MATERIALS. doi: 10.1016/S1872-5805(21)60088-4
Citation: JIA Hui, LIANG Lei-Lei, LIU Dong, WANG Zheng, LIU Zhuo, XIE Li-Jing, TAO Ze-Chao, KONG Qing-Qiang, CHEN Cheng-Meng. A comprehensive review of three-dimensional graphene for thermal management and electromagnetic protection[J]. NEW CARBON MATERIALS. doi: 10.1016/S1872-5805(21)60088-4

3D石墨烯在热管理及电磁防护应用中的研究进展

doi: 10.1016/S1872-5805(21)60088-4
基金项目: 国家自然科学基金委员会优秀青年科学基金项目(21922815);山西省关键核心技术和共性技术研发攻关专项(20201102018);山西省市场监督管理局石墨烯基导电油墨产业化技术(20200716)
详细信息
    通讯作者:

    孔庆强 副研究员. E-mail:kongqq@sxicc.ac.cn

    陈成猛 研究员 E-mail:ccm@sxicc.ac.cn

A comprehensive review of three-dimensional graphene for thermal management and electromagnetic protection

More Information
  • 摘要: 由于石墨烯粉体在复合材料中存在严重的团聚和低的利用效率问题,3D石墨烯引起了研究人员极大的关注。同时,3石墨烯网络结构具有一系列优点,例如多级孔结构、轻质、高导热、优良的导电性等,因此,它被广泛应用于热管理和电磁防护领域。为了充分理解 3D 石墨烯的研究进展,在本文中,我们详细地介绍了各向同性和各向异性结构3D石墨烯的制备策略。然后,对于热界面材料、相变材料、电磁干扰屏蔽材料、微波吸收材料方面,从不同的应用角度全面综述了3D石墨烯的最新研究进展。最后,讨论了3D石墨烯网络在研究中存在的问题,并对未来研究方向和发展趋势进行了展望。该工作能够为3D石墨烯网络在未来5G电子设备散热和电磁防护方面的问题提供新的解决方案。
  • Figure  1.  General diagram of the features and applications fields of the 3D graphene networks.

    Figure  2.  (a) Synthesis of a GF by CVD growth with a Ni foam template and integration with polydimethylsiloxane (Reproduced with permission, Copyright 2011, Nature Publishing Group[24]). (b) The preparation process of GF/epoxy composite with a polyurethane foam template (Reproduced with permission, Copyright 2016, Royal Society of Chemistry[29]). (c) Digital photos of a 2 mg/mL homogeneous GO suspension before and after hydrothermal reduction, digital photos of a self-assemby hydrogel with high mechanical strength, SEM images of the self-assemby hydrogel (Reproduced with permission, Copyright 2010, American Chemical Society[31]). (d) Illustration of the fabrication process of the ultralight graphene aerogel (ULGA) by the sol-gel method (Reproduced with permission, Copyright 2013 WILEY-VCH[36]).

    Figure  3.  (a) Typical top-view and side-view SEM images of graphene monolith of 10 mg cm−3. (b) Schematic of the formation mechanism of the cork-like monolith by freeze casting (Reproduced with permission, Copyright 2012, Nature Publishing Group[39]). (c) Schematic of the fabrication process and SEM images of the verticality aligned network with a cigarette filter template (Reproduced with permission, Copyright 2018, Royal Society of Chemistry[41]). (d) Schematic of fabrication and SEM image of oriented graphene network induced by KOH (Reproduced with permission, Copyright 2016, WILEY-VCH[42]). (e) Schematic of the fabrication and SEM image of vertically aligned reduced graphene oxide (VArGO) network (Reproduced with permission, Copyright 2014, American Chemical Society[44]).

    Figure  4.  (a) A typical heat sink electronics package with two TIMs. (b)Working principle of a TIM (Reproduced with permission, Copyright 2014, Taylor & Francis[48]).

    Figure  5.  (a) Diagrams of gGA/SR fabrication procedure and thermal conductivity (Reproduced with permission, Copyright 2019, WILEY-VCH[19]). (b) Schematic of the fabrication and thermal conductivity of vertically aligned graphene aerogel (Reproduced with permission, Copyright 2018, Elsevier[51]). (c) Schematic of the fabrication and thermal conductivity of vertically aligned RGO/GNP hybrid hydrogel (Reproduced with permission, Copyright 2018, American Chemical Society[52]). (d) Schematic the structural change of the graphene and thermal diffusivity and thermal conductivity of graphene paper along the in-plane and through-plane direction (Reproduced with permission, Copyright 2019, American Chemical Society[53]).

    Figure  6.  Schematic diagram of the phase change process of liquid-solid PCMs.

    Figure  7.  (a) Preparation schematic of composite PCM: SEM of 3D graphene oxide networks, shape stabilizing effect, temperature evolution curves of pure PEG and composite PCMs (Reproduced with permission, Copyright 2017 Elsevier Ltd[62]). (b) Digital photo of 3D GO aerogel, SEM images of PCM and shape stabilizing effect of pure paraffin and PCM (Reproduced with permission, Copyright 2016 Elsevier Ltd.[60]). (c) Preparation schematic of 3D structure of hybrid GA, digital photos of GA and SEM image of PCM, thermomechanical analysis (TMA) curves of pure PEG and PCM (Reproduced with permission, Copyright 2016 Elsevier Ltd.[63]). (d) Preparation schematic and SEM image of PCM, TMA curves and shape stabilizing effect of pure paraffin and paraffin /GA (Reproduced with permission, Copyright 2017 Published by Elsevier B.V.[56]).

    Figure  8.  (a) Preparation schematic of PCMs, optical images and SEM image of PCMs, infrared thermography, and temperature curve of pure OA and PCM (Reproduced with permission, Copyright 2013 Elsevier B.V.[64]). (b) SEM images of GA and PCM, shape stabilizing effect and thermal conductivity of pure paraffin and PCMs (Reproduced with permission, Copyright 2021 Elsevier Ltd.[47]). (c) Digital photo and SEM images of GA, thermal conductivity and TMA curves of PCMs (Reproduced with permission, Copyright 2012 Royal Society of Chemistry[15]). (d) Preparation schematic of the PCMs, optical photos of GA (Reproduced with permission, Copyright 2016 Royal Society of Chemistry[65]). (e) Preparation schematic and thermal conductivity of PCMs (Reproduced with permission, Copyright 2020 Elsevier Ltd.[66]).

    Figure  9.  (a) SEM images of p-GA-1300. (b) Electrical conductivity. (c) EMI shielding effectiveness of p-GAs annealed at different temperatures (Reproduced with permission, Copyright 2017, Elsevier Ltd[45]). (d) Schematic diagram of the fabrication process and shielding mechanism of PUG foams. (e) EMI Shielding performance of the PUG-10 foam under cycling stability test (Reproduced with permission, Copyright 2016 American Chemical Society[97]). (f) Fabrication diagram and (g) EMI SE of the Fe3O4/ thermally annealed graphene aerogel(TAGA/epoxy nanocomposites (Reproduced with permission, Copyright 2018 Elsevier Ltd.[95]).

    Figure  10.  (a) The SEM images of GF‐30. (b) Direct comparison of the qualified bandwidth. (c) Schematic diagram of absorption mechanism of the GFs (Reproduced with permission, Copyright 2015 WILEY‐VCH[101]). (d) Schematic diagram of the preparation process and electromagnetic wave absorption performance of graphene aerogel spheres (Reproduced with permission, Copyright 2020 Springer Nature[103]). (e-f) Schematic diagram of morphology, impedance matching and reflection loss of SiCw/rGOA-PM and SiCw/rGOA-IS (Reproduced with permission, Copyright 2020 Elsevier Ltd[105]).

  • [1] Novoselov K S, Geim A K, Morozov SV, et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306(5696):666-669. doi: 10.1126/science.1102896
    [2] Lee C, Wei X D, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science,2008,321(5887):385-388. doi: 10.1126/science.1157996
    [3] Zhu Y W, Murali S, Cai W W, et al. Graphene and graphene oxide: synthesis, properties, and applications[J]. Advanced Materials,2010,22(35):3906-3924. doi: 10.1002/adma.201001068
    [4] Liu C, Yu Z, Neff D, et al. Graphene-based supercapacitor with an ultrahigh energy density[J]. Nano Letters,2010,10(12):4863-4868. doi: 10.1021/nl102661q
    [5] Konatham D, Papavassiliou D V, Striolo A. Thermal boundary resistance at the graphene-graphene interface estimated by molecular dynamics simulations[J]. Chem Phys Lett,2012,527:47-50. doi: 10.1016/j.cplett.2012.01.007
    [6] Shi J J, Zhong Y, Fisher T S, et al. Decomposition of the thermal boundary resistance across carbon nanotube-graphene junctions to different mechanisms[J]. ACS Appl Mater Interfaces,2018,10(17):15226-15231. doi: 10.1021/acsami.8b00826
    [7] Novoselov K S, Fal′ko V I, Colombo L, et al. A roadmap for graphene[J]. Nature,2012,490(7419):192-200. doi: 10.1038/nature11458
    [8] Li C, Shi G. Three-dimensional graphene architectures[J]. Nanoscale,2012,4(18):5549-5563. doi: 10.1039/c2nr31467c
    [9] Zeng M, Wang W L, Bai X D. Preparing three-dimensional graphene architectures: review of recent developments[J]. Chinese Physics B,2013,22(9):8.
    [10] Li B L, Guo J G, Xun B, et al. Preparation, microstructure and properties of three-dimensional carbon/carbon composites with high thermal conductivity[J]. New Carbon Mater,2020,35(5):567-575. doi: 10.1016/S1872-5805(20)60510-8
    [11] Chen L, Hou X S, Song N, et al. Cellulose/graphene bioplastic for thermal management: Enhanced isotropic thermally conductive property by three-dimensional interconnected graphene aerogel[J]. Compos Pt A-Appl Sci Manuf,2018,107:189-196. doi: 10.1016/j.compositesa.2017.12.014
    [12] An D, Cheng S S, Zhang Z Y, et al. A polymer-based thermal management material with enhanced thermal conductivity by introducing three-dimensional networks and covalent bond connections[J]. Carbon,2019,155:258-267. doi: 10.1016/j.carbon.2019.08.072
    [13] Huang H N, Bi H, Zhou M, et al. A three-dimensional elastic macroscopic graphene network for thermal management application[J]. Journal of Materials Chemistry A,2014,2(43):18215-18218. doi: 10.1039/C4TA03801K
    [14] Liu Z, Shen D, Yu J, et al. Exceptionally high thermal and electrical conductivity of three-dimensional graphene-foam-based polymer composites[J]. RSC Adv,2016,6(27):22364-22369. doi: 10.1039/C5RA27223H
    [15] Yang J, Li X F, Han S, et al. High-quality graphene aerogels for thermally conductive phase change composites with excellent shape stability[J]. Journal of Materials Chemistry A,2018,6(14):5880-5886. doi: 10.1039/C8TA00078F
    [16] Loeblein M, Tsang S H, Pawlik M, et al. High-density 3D-boron nitride and 3D-graphene for high-performance nano-thermal interface material[J]. ACS Nano,2017,11(2):2033-2044. doi: 10.1021/acsnano.6b08218
    [17] Sun X Y, Liu X, Shen X, et al. Graphene foam/carbon nanotube/poly(dimethyl siloxane) composites for exceptional microwave shielding[J]. Compos Pt A-Appl Sci Manuf,2016,85:199-206. doi: 10.1016/j.compositesa.2016.03.009
    [18] Chen C, Xi J B, Zhou E Z, et al. Porous graphene microflowers for high-performance microwave absorption[J]. Nano-Micro Lett,2018,10(2):11.
    [19] Zhang W, Kong Q Q, Tao Z, et al. 3D thermally cross-linked graphene aerogel-enhanced silicone rubber elastomer as thermal interface material[J]. Advanced Materials Interfaces,2019,6(12
    [20] Kargar F, Barani Z, Balinskiy M, et al. Dual-functional graphene composites for electromagnetic shielding and thermal management[J]. Adv Electron Mater,2019,5(1):1800558. doi: 10.1002/aelm.201800558
    [21] Jia H, Kong Q Q, Liu Z, et al. 3D graphene/carbon nanotubes/polydimethylsiloxane composites as high-performance electromagnetic shielding material in X-band[J]. Compos Pt A-Appl Sci Manuf,2020,129:9.
    [22] Zhu Y L, Wang Y X, Gao C, et al. CoMoO4-N-doped carbon hybrid nanoparticles loaded on a petroleum asphalt-based porous carbon for lithium storage[J]. New Carbon Mater,2020,35(4):358-370. doi: 10.1016/S1872-5805(20)60494-2
    [23] Martin C R, Parthasarathy R, Menon V. Template synthesis of electronically conductive polymers preparation of thin-films[J]. Electrochim Acta,1994,39(8-9):1309-1313. doi: 10.1016/0013-4686(94)E0052-2
    [24] Chen Z, Ren W, Gao L, et al. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition[J]. Nature Materials,2011,10(6):424-428. doi: 10.1038/nmat3001
    [25] Dai G P, Wu M H, Taylor D K, et al. Square-shaped, single-crystal, monolayer graphene domains by low-pressure chemical vapor deposition[J]. Materials Research Letters,2013,1(2):67-76. doi: 10.1080/21663831.2013.772078
    [26] Ning G Q, Fan Z J, Wang G, et al. Gram-scale synthesis of nanomesh graphene with high surface area and its application in supercapacitor electrodes[J]. Chem Commun,2011,47(21):5976-5978. doi: 10.1039/c1cc11159k
    [27] Mecklenburg M, Schuchardt A, Mishra Y K, et al. Aerographite: ultra lightweight, flexible nanowall, carbon microtube material with outstanding mechanical performance[J]. Advanced Materials,2012,24(26):3486-3490. doi: 10.1002/adma.201200491
    [28] Zhou M, Lin T Q, Huang F Q, et al. Highly conductive porous graphene/ceramic composites for heat transfer and thermal energy storage[J]. Advanced Functional Materials,2013,23(18):2263-2269. doi: 10.1002/adfm.201202638
    [29] Liu Z D, Shen D Y, Yu J H, et al. Exceptionally high thermal and electrical conductivity of three-dimensional graphene-foam-based polymer composites[J]. RSC Adv,2016,6(27):22364-22369. doi: 10.1039/C5RA27223H
    [30] Gao F, Qin S H, Zang Y H, et al. Highly efficient formation of Mn3O4-graphene oxide hybrid aerogels for use as the cathode material of high performance lithium ion batteries[J]. New Carbon Mater,2020,35(2):121-130. doi: 10.1016/S1872-5805(20)60479-6
    [31] Xu Y, Sheng K, Li C, et al. Self-assembled graphene hydrogel via a one-step hydrothermal process[J]. ACS Nano,2010,4(7):4324-4330. doi: 10.1021/nn101187z
    [32] Sun Y Q, Wu Q, Shi G Q. Supercapacitors based on self-assembled graphene organogel[J]. Phys Chem Chem Phys,2011,13(38):17249-17254. doi: 10.1039/c1cp22409c
    [33] Zhao Y, Liu J, Hu Y, et al. Highly compression-tolerant supercapacitor based on polypyrrole-mediated graphene foam electrodes[J]. Advanced Materials,2013,25(4):591-595. doi: 10.1002/adma.201203578
    [34] Xia X H, Chao D L, Zhang Y Q, et al. Three-dimensional graphene and their integrated electrodes[J]. Nano Today,2014,9(6):785-807. doi: 10.1016/j.nantod.2014.12.001
    [35] Huang H, Chen P W, Zhang X T, et al. Edge-to-edge assembled graphene oxide aerogels with outstanding mechanical performance and superhigh chemical activity[J]. Small,2013,9(8):1397-1404. doi: 10.1002/smll.201202965
    [36] Hu H, Zhao Z B, Wan W B, et al. Ultralight and highly compressible graphene aerogels[J]. Advanced Materials,2013,25(15):2219-2223. doi: 10.1002/adma.201204530
    [37] Park S, Lee K S, Bozoklu G, et al. Graphene oxide papers modified by divalent ions - enhancing mechanical properties via chemical cross-linking[J]. ACS Nano,2008,2(3):572-578. doi: 10.1021/nn700349a
    [38] Bai H, Li C, Wang X L, et al. On the gelation of graphene oxide[J]. J Phys Chem C,2011,115(13):5545-5551. doi: 10.1021/jp1120299
    [39] Qiu L, Liu J Z, Chang S L Y, et al. Biomimetic superelastic graphene-based cellular monoliths[J]. Nature Communications,2012:3.
    [40] Jia H, Kong Q Q, Liu Z, et al. 3D graphene/carbon nanotubes/polydimethylsiloxane composites as high-performance electromagnetic shielding material in X-band[J]. Composites Part A: Applied Science and Manufacturing,2020,129:105712. doi: 10.1016/j.compositesa.2019.105712
    [41] Liu Z, Chen Y, Dai W, et al. Anisotropic thermal conductive properties of cigarette filter-templated graphene/epoxy composites[J]. RSC Adv,2018,8(2):1065-1070. doi: 10.1039/C7RA11574A
    [42] Yao B W, Chen J, Huang L, et al. Base-induced liquid crystals of graphene oxide for preparing elastic graphene foams with long-range ordered microstructures[J]. Advanced Materials,2016,28(8):1623-1629. doi: 10.1002/adma.201504594
    [43] An F, Li X F, Min P, et al. Highly anisotropic graphene/boron nitride hybrid aerogels with long-range ordered architecture and moderate density for highly thermally conductive composites[J]. Carbon,2018,126:119-127. doi: 10.1016/j.carbon.2017.10.011
    [44] Yoon Y, Lee K, Kwon S, et al. Vertical alignments of graphene sheets spatially and densely piled for fast ion diffusion in compact supercapacitors[J]. ACS Nano,2014,8(5):4580-4590. doi: 10.1021/nn500150j
    [45] Chen Y, Zhang H B, Wang M, et al. Phenolic resin-enhanced three-dimensional graphene aerogels and their epoxy nanocomposites with high mechanical and electromagnetic interference shielding performances[J]. Composites Science and Technology,2017,152:254-262. doi: 10.1016/j.compscitech.2017.09.022
    [46] Liu D, Kong Q Q, Jia H, et al. Dual-functional 3D multi-wall carbon nanotubes/graphene/silicone rubber elastomer: Thermal management and electromagnetic interference shielding[J]. Carbon,2021,183:216-224. doi: 10.1016/j.carbon.2021.07.013
    [47] Kong Q Q, Jia H, Xie L J, et al. Ultra-high temperature graphitization of three-dimensional large-sized graphene aerogel for the encapsulation of phase change materials[J]. Composites Part A: Applied Science and Manufacturing,2021,145:106391. doi: 10.1016/j.compositesa.2021.106391
    [48] Hansson J, Nilsson T M J, Ye L L, et al. Novel nanostructured thermal interface materials: a review[J]. Int Mater Rev,2018,63(1):22-45. doi: 10.1080/09506608.2017.1301014
    [49] Pokharel M, Zhao H Z, Ren Z F, et al. Grain boundary Kapitza resistance analysis of nanostructured FeSb2[J]. Int J Therm Sci.,2013,71:32-35. doi: 10.1016/j.ijthermalsci.2013.03.009
    [50] Due J, Robinson A J. Reliability of thermal interface materials: A review[J]. Appl Therm Eng,2013,50(1):455-463. doi: 10.1016/j.applthermaleng.2012.06.013
    [51] Li X H, Liu P, Li X, et al. Vertically aligned, ultralight and highly compressive all-graphitized graphene aerogels for highly thermally conductive polymer composites[J]. Carbon,2018,140:624-633. doi: 10.1016/j.carbon.2018.09.016
    [52] An F, Li X, Min P, et al. Vertically aligned high-quality graphene foams for anisotropically conductive polymer composites with ultrahigh through-plane thermal conductivities[J]. ACS Appl Mater Interfaces,2018,10(20):17383-17392. doi: 10.1021/acsami.8b04230
    [53] Dai W, Ma T, Yan Q, et al. Metal-level thermally conductive yet soft graphene thermal interface materials[J]. ACS Nano,2019,13(10):11561-11571. doi: 10.1021/acsnano.9b05163
    [54] Feng J, Liu Z J, Zhang D Q, et al. Phase change materials coated with modified graphene-oxide as fillers for silicone rubber used in thermal interface applications[J]. New Carbon Mater,2019,34(2):188-195. doi: 10.1016/S1872-5805(19)60011-9
    [55] Wen R F, Ma X H, Lee Y C, et al. Liquid-vapor phase-change heat transfer on functionalized nanowired surfaces and beyond[J]. Joule,2018,2(11):2307-2347. doi: 10.1016/j.joule.2018.08.014
    [56] Yan J, Qi G Q, Bao R Y, et al. Hybridizing graphene aerogel into three-dimensional graphene foam for high-performance composite phase change materials[J]. Energy Storage Mater,2018,13:88-95. doi: 10.1016/j.ensm.2017.12.028
    [57] Fallahi A, Guldentops G, Tao M J, et al. Review on solid-solid phase change materials for thermal energy storage: molecular structure and thermal properties[J]. Appl Therm Eng,2017,127:1427-1441. doi: 10.1016/j.applthermaleng.2017.08.161
    [58] Velez C, Khayet M, de Zarate J M O. Temperature-dependent thermal properties of solid/liquid phase change even-numbered n-alkanes: n-Hexadecane, n-octadecane and n-eicosane[J]. Appl. Energy,2015,143:383-394. doi: 10.1016/j.apenergy.2015.01.054
    [59] Huang J, Zhang B, He M, et al. Preparation of anisotropic reduced graphene oxide/BN/paraffin composite phase change materials and investigation of their thermal properties[J]. J Mater Sci,2020,55(17):7337-7350. doi: 10.1007/s10853-020-04514-9
    [60] Xu Y, Fleischer A S, Feng G. Reinforcement and shape stabilization of phase-change material via graphene oxide aerogel[J]. Carbon,2017,114:334-346. doi: 10.1016/j.carbon.2016.11.069
    [61] Worsley M A, Pauzauskie P J, Olson T Y, et al. Synthesis of graphene aerogel with high electrical conductivity[J]. J Am Chem Soc,2010,132(40):14067-14069. doi: 10.1021/ja1072299
    [62] Tang L S, Yang J, Bao R Y, et al. Polyethylene glycol/graphene oxide aerogel shape-stabilized phase change materials for photo-to-thermal energy conversion and storage via tuning the oxidation degree of graphene oxide[J]. Energy Conversion and Management,2017,146:253-264. doi: 10.1016/j.enconman.2017.05.037
    [63] Yang J, Qi G Q, Liu Y, et al. Hybrid graphene aerogels/phase change material composites: Thermal conductivity, shape-stabilization and light-to-thermal energy storage[J]. Carbon,2016,100:693-702. doi: 10.1016/j.carbon.2016.01.063
    [64] Zhong Y J, Zhou M, Huang F Q, et al. Effect of graphene aerogel on thermal behavior of phase change materials for thermal management[J]. Solar Energy Materials and Solar Cells,2013,113:195-200. doi: 10.1016/j.solmat.2013.01.046
    [65] Yang J, Li X, Han S, et al. Air-dried, high-density graphene hybrid aerogels for phase change composites with exceptional thermal conductivity and shape stability[J]. Journal of Materials Chemistry A,2016,4(46):18067-18074. doi: 10.1039/C6TA07869A
    [66] Liu P, An F, Lu X, et al. Highly thermally conductive phase change composites with excellent solar-thermal conversion efficiency and satisfactory shape stability on the basis of high-quality graphene-based aerogels[J]. Compos Sci Technol,2021,201:108492. doi: 10.1016/j.compscitech.2020.108492
    [67] Jia H, Yang X, Kong Q Q, et al. Free-standing, anti-corrosion, super flexible graphene oxide/silver nanowire thin films for ultra-wideband electromagnetic interference shielding[J]. Journal of Materials Chemistry A,2021,9(2):1180-1191. doi: 10.1039/D0TA09246K
    [68] Shahzad F, Alhabeb M, Hatter C B, et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes)[J]. Science,2016,353(6304):1137-1140. doi: 10.1126/science.aag2421
    [69] Wan Y J, Wang X Y, Li X M, et al. Ultrathin densified carbon nanotube film with "metal-like" conductivity, superior mechanical strength, and ultrahigh electromagnetic interference shielding effectiveness[J]. ACS Nano,2020,14(10):14134-14145. doi: 10.1021/acsnano.0c06971
    [70] Wan Y J, Wang X Y, Li X M, et al. Ultrathin densified carbon nanotube film with "metal-like" conductivity, superior mechanical strength, and ultrahigh electromagnetic interference shielding effectiveness[J]. ACS Nano,2020,14(10):14134-14145. doi: 10.1021/acsnano.0c06971
    [71] Quan B, Liang X, Ji G, et al. Dielectric polarization in electromagnetic wave absorption: review and perspective[J]. J Alloy Compd,2017,728:1065-1075. doi: 10.1016/j.jallcom.2017.09.082
    [72] Zeng X, Cheng X, Yu R, et al. Electromagnetic microwave absorption theory and recent achievements in microwave absorbers[J]. Carbon,2020,168:606-623. doi: 10.1016/j.carbon.2020.07.028
    [73] Green M, Chen X. Recent progress of nanomaterials for microwave absorption[J]. Journal of Materiomics,2019,5(4):503-541. doi: 10.1016/j.jmat.2019.07.003
    [74] Zhang Z, Cai Z, Wang Z, et al. A review on metal–organic framework-derived porous carbon-based novel microwave absorption materials[J]. Nano Micro Lett,2021,13(1):56.
    [75] Meng F, Wang H, Huang F, et al. Graphene-based microwave absorbing composites: A review and prospective[J]. Composites, Part B,2018,137:260-277. doi: 10.1016/j.compositesb.2017.11.023
    [76] Yang H, Cao M, Li Y, et al. Enhanced dielectric properties and excellent microwave absorption of SiC powders driven with NiO nanorings[J]. Adv Opt Mater,2014,2(3):214-219. doi: 10.1002/adom.201300439
    [77] Xu H, Yin X, Fan X, et al. Constructing a tunable heterogeneous interface in bimetallic metal-organic frameworks derived porous carbon for excellent microwave absorption performance[J]. Carbon,2019,148:421-429. doi: 10.1016/j.carbon.2019.03.091
    [78] Cao M, Wang X, Cao W, et al. Thermally driven transport and relaxation switching self-powered electromagnetic energy conversion[J]. Small,2018,14:1800987-1800994. doi: 10.1002/smll.201800987
    [79] Cao M S, Wang X X, Zhang M, et al. Electromagnetic response and energy conversion for functions and devices in low‐dimensional materials[J]. Adv Funct Mater,2019,29:1807398-1807451. doi: 10.1002/adfm.201807398
    [80] Wen B, Cao M S, Hou Z L, et al. Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites[J]. Carbon,2013,65:124-139. doi: 10.1016/j.carbon.2013.07.110
    [81] Cao M S, Song W L, Hou Z L, et al. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites[J]. Carbon,2010,48(3):788-796. doi: 10.1016/j.carbon.2009.10.028
    [82] Cao M S, Yang J, Song W L, et al. Ferroferric oxide/multiwalled carbon nanotube vs polyaniline/ferroferric oxide/multiwalled carbon nanotube multiheterostructures for highly effective microwave absorption[J]. ACS Appl Mater Interfaces,2012,4(12):6949-6956. doi: 10.1021/am3021069
    [83] Zhi D, Li T, Li J, et al. A review of three-dimensional graphene-based aerogels: synthesis, structure and application for microwave absorption[J]. Composites Part B,2021:211.
    [84] Chen H, Ma W, Huang Z, et al. Graphene‐based baterials toward microwave and terahertz absorbing stealth technologies[J]. Adv Opt Mater,2019,7(8):1801318-1801333. doi: 10.1002/adom.201801318
    [85] Ding J, Wang L, Zhao Y, et al. Boosted interfacial polarization from multishell TiO2@Fe3O4@PPy heterojunction for enhanced microwave absorption[J]. Small,2019,15:1902885-1902894. doi: 10.1002/smll.201902885
    [86] Shi X L, Cao M S, Yuan J, et al. Nonlinear resonant and high dielectric loss behavior of CdS∕α-Fe2O3 heterostructure nanocomposites[J]. Appl Phys Lett,2008,93(18):183118-183121. doi: 10.1063/1.3023074
    [87] Wen Z, Liang C, Bi H, et al. Controllable synthesis of elongated hexagonal bipyramid shaped La(OH)3 nanorods and the distribution of electric property by off-axis electron holography[J]. Nano Res,2016,9(9):2561-2571. doi: 10.1007/s12274-016-1142-6
    [88] Xu H, Yin X, Li M, et al. Mesoporous carbon hollow microspheres with red blood cell like morphology for efficient microwave absorption at elevated temperature[J]. Carbon,2018,132:343-351. doi: 10.1016/j.carbon.2018.02.040
    [89] Li Y, Pei X, Shen B, et al. Polyimide/graphene composite foam sheets with ultrahigh thermostability for electromagnetic interference shielding[J]. Rsc Adv,2015,5(31):24342-24351. doi: 10.1039/C4RA16421K
    [90] Zhang P, Zhang X, Zhang S, et al. One-pot green synthesis, characterizations, and biosensor application of self-assembled reduced graphene oxide–gold nanoparticle hybrid membranes[J]. J Mater Chem B,2013,1(47):6525-6531. doi: 10.1039/c3tb21270j
    [91] Wu Y, Yi N, Huang L, et al. Three-dimensionally bonded spongy graphene material with super compressive elasticity and near-zero Poisson's ratio[J]. Nature communications,2015,6:6141. doi: 10.1038/ncomms7141
    [92] Wu Y, Wang Z, Liu X, et al. Ultralight graphene foam/conductive polymer composites for exceptional electromagnetic interference shielding[J]. ACS Appl Mater Interfaces,2017,9(10):9059-9069. doi: 10.1021/acsami.7b01017
    [93] Liang C, Qiu H, Han Y, et al. Superior electromagnetic interference shielding 3D graphene nanoplatelets/reduced graphene oxide foam/epoxy nanocomposites with high thermal conductivity[J]. Journal of Materials Chemistry C,2019,7(9):2725-2733. doi: 10.1039/C8TC05955A
    [94] Kong L, Yin X, Han M, et al. Macroscopic bioinspired graphene sponge modified with in-situ grown carbon nanowires and its electromagnetic properties[J]. Carbon,2017,111:94-102. doi: 10.1016/j.carbon.2016.09.066
    [95] Huang F Y, Liang C, Han Y, et al. Fabrication and investigation on the Fe3O4/thermally annealed graphene aerogel/epoxy electromagnetic interference shielding nanocomposites[J]. Compos Sci Technol,2019,169:70-75. doi: 10.1016/j.compscitech.2018.11.012
    [96] Sun X, Liu X, Shen X, et al. Reprint of graphene foam/carbon nanotube/poly(dimethyl siloxane) composites for exceptional microwave shielding[J]. Composites Part A: Applied Science and Manufacturing,2017,92:190-197. doi: 10.1016/j.compositesa.2016.10.030
    [97] Shen B, Li Y, Zhai W, et al. Compressible graphene-coated polymer foams with ultralow density for adjustable electromagnetic interference (EMI) shielding[J]. ACS Appl Mater Interfaces,2016,8(12):8050-8057. doi: 10.1021/acsami.5b11715
    [98] Qu J Y, Yu Z Q, Zang Y H, et al. A CoMn2O3.5-RGO hybrid as an effective Fenton-like catalyst for the decomposition of various dyes[J]. New Carbon Mater,2019,34(6):539-545. doi: 10.1016/S1872-5805(19)60030-2
    [99] Wang X X, Cao W Q, Cao M S, et al. Assembling nano-microarchitecture for electromagnetic absorbers and smart devices[J]. Adv Mater,2020,32(36):2002112-2002133.
    [100] Wang G, Ong S J H, Zhao Y, et al. Integrated multifunctional macrostructures for electromagnetic wave absorption and shielding[J]. J Mater Chem A,2020,8(46):24368-24387. doi: 10.1039/D0TA08515D
    [101] Zhang Y, Huang Y, Zhang T, et al. Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam[J]. Adv Mater,2015,27(12):2049-53. doi: 10.1002/adma.201405788
    [102] Zhang Y, Huang Y, Chen H, et al. Composition and structure control of ultralight graphene foam for high-performance microwave absorption[J]. Carbon,2016,105:438-447. doi: 10.1016/j.carbon.2016.04.070
    [103] Li T, Zhi D, Chen Y, et al. Multiaxial electrospun generation of hollow graphene aerogel spheres for broadband high-performance microwave absorption[J]. Nano Res,2020,13(2):477-484. doi: 10.1007/s12274-020-2632-0
    [104] Liang L L, Song G, Liu Z, et al. Constructing Ni12P5/Ni2P heterostructures to boost interfacial polarization for enhanced microwave absorption performance[J]. ACS Appl Mater Interfaces,2020,12(46):52208-52220. doi: 10.1021/acsami.0c16287
    [105] Chen J P, Jia H, Liu Z, et al. Construction of C-Si heterojunction interface in SiC whisker/reduced graphene oxide aerogels for improving microwave absorption[J]. Carbon,2020,164:59-68. doi: 10.1016/j.carbon.2020.03.049
  • 加载中
图(10)
计量
  • 文章访问数:  24
  • HTML全文浏览量:  9
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-14
  • 修回日期:  2021-08-09
  • 网络出版日期:  2021-09-03

目录

    /

    返回文章
    返回