留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A review on vertically aligned carbon nanotube arrays and carbon/carbon composites: Fabrication, thermal conduction properties and applications in thermal management

DONG Zhi-jun SUN Bing ZHU Hui YUAN Guan-ming LI Bao-liu GUO Jian-guang LI Xuan-ke CONG Ye ZHANG Jiang

董志军, 孙兵, 朱辉, 袁观明, 李保六, 郭建光, 李轩科, 丛野, 张江. 垂直排列碳纳米管阵列和炭/炭复合材料的制备、导热性能及其在热管理中的应用进展[J]. 新型炭材料. doi: 10.1016/S1872-5805(21)60090-2
引用本文: 董志军, 孙兵, 朱辉, 袁观明, 李保六, 郭建光, 李轩科, 丛野, 张江. 垂直排列碳纳米管阵列和炭/炭复合材料的制备、导热性能及其在热管理中的应用进展[J]. 新型炭材料. doi: 10.1016/S1872-5805(21)60090-2
DONG Zhi-jun, SUN Bing, ZHU Hui, YUAN Guan-ming, LI Bao-liu, GUO Jian-guang, LI Xuan-ke, CONG Ye, ZHANG Jiang. A review on vertically aligned carbon nanotube arrays and carbon/carbon composites: Fabrication, thermal conduction properties and applications in thermal management[J]. NEW CARBON MATERIALS. doi: 10.1016/S1872-5805(21)60090-2
Citation: DONG Zhi-jun, SUN Bing, ZHU Hui, YUAN Guan-ming, LI Bao-liu, GUO Jian-guang, LI Xuan-ke, CONG Ye, ZHANG Jiang. A review on vertically aligned carbon nanotube arrays and carbon/carbon composites: Fabrication, thermal conduction properties and applications in thermal management[J]. NEW CARBON MATERIALS. doi: 10.1016/S1872-5805(21)60090-2

垂直排列碳纳米管阵列和炭/炭复合材料的制备、导热性能及其在热管理中的应用进展

doi: 10.1016/S1872-5805(21)60090-2
基金项目: 国家自然科学基金项目(NO. U1960106, 52072275, U1864207, 52002296)
详细信息
    通讯作者:

    董志军,教授. E-mail:dongzj72@sohu.com

    李轩科,教授. E-mail:xkli@21cn.com

  • 中图分类号: TB33

A review on vertically aligned carbon nanotube arrays and carbon/carbon composites: Fabrication, thermal conduction properties and applications in thermal management

More Information
  • 摘要: 现代科技的发展对热管理材料提出了更高、更迫切的需求。由于具有优异的导热性、低热膨胀系数和耐高温性,定向排列碳纳米管和炭/炭复合材料作为理想的轻质、稳定的热管理材料引起了广泛的关注。本文首先介绍了炭材料的导热机制,系统评述了垂直排列碳纳米管阵列和炭/炭复合材料的制备方法,热导率的主要影响因素以及它们在热管理中的应用。总结了材料制备-结构-性能之间的关系,并给出了提高材料导热性能的策略。最后提出了垂直排列碳纳米管阵列和炭/炭复合材料在热管理应用中面临的挑战及今后的研究方向。
  • Figure  1.  Carbon-based TMMs and their applications.

    Figure  2.  FESEM micrographs of aligned CNTs synthesized on three kinds of substrate with 7 vol% H2 at 870 °C for 1 h: non crystalline substrate (a, e) Si/SiO2 and (b, f) Al2O3 and crystalline one, (c, g, d) sapphire.[48]. (Reprinted with Permission).

    Figure  3.  Model describing the formation of catalytic particles and the VACNT growth process[55]. (Reprinted with Permission).

    Figure  4.  Schematic diagram of growth of highly dense and VA-SWCNTs using Al as barrier layer (a-d). SEM micrographs of (e) Fe catalyst, (f) as-grown SWCNTs on Fe catalyst, (g) Fe/Al catalysts, and (h) as-grown highly dense and VA-SWCNTs on Fe/Al catalysts by PECVD method[29]. (i) Schematic image of the biaxial mechanical densification method to enhance the volume fraction of VASWCNT forests. (j) Dependence of the thermal diffusivity (black closed triangles for left axis) and thermal conductivity (red opened circles for right axis) of VASWCNT forests on the volume fraction[59]. (Reprinted with Permission).

    Figure  5.  (a) Coatings remarkably reducing thermal contact resistance (Rc) for VACNT arrays as TIMs[62]. (b) Cu-Solder-Ti/Ni/Au-MWNTs-Ti/Ni/Au-Solder-Cu configuration and approximate thicknesses[65]. (c) Thermal resistance of transferred VACNT arrays. (d) Optical images of a CPU on a motherboard and a heat sink covered by four VACNT arrays. Temperature differences (DT) between the CPU and the heat sink as a function of time using heat sinks with contact surface roughness of (e) 2.66 and (f) 0.88 mm[23]. (Reprinted with Permission).

    Figure  6.  (a) Schematic diagrams of 1D and 2D C/C composites and their thermal diffusion coefficient test directions[81]. (b) Weaving process of preform architecture for 3D C/C composites[85]. (c) SEM images of a whole ribbon-shaped carbon fibers after graphitization at 2800 °C. (d) SEM images of transverse section of the highly oriented C/C composite block graphitized at 3000 °C. (e) Optical photograph of one-dimensional C/C composite block[79]. (f) SEM images of graphite fibers heat-treated at 3000 °C. (g) SEM images of transverse section of the one-dimensional cylindrical C/C composites graphitized at 3000 °C. (h) The optical photographs of the graphite fiber rods after heat treatment at 3000 °C for 15 min and peeling off the T300-3k fiber shell[82]. (Reprinted with Permission).

    Figure  7.  (a) Edge of C-C radiator panel prior to installation[113]. (b) Materials Research Corporation (MER) leading edges mounted on X-43A test vehicle[117]. (c) Finned C/C heat pipe with an Nb-1Zr evaporator liner[114]. (Reprinted with Permission).

    Table  1.   Comparison of TC of C/C composites reinforced with mesophase pitch-derived carbon fibers.

    SampleGraphitization temperature (°C)Density (g cm−3)Thermal conductivity (W·m−1·K−1)Refs.
    XYZ
    1D Thermal graph panels30002.2746--[75]
    1D Self-adhesive sheets2600-852--[76]
    1D Self-adhesive bulks26002.18717--[77]
    1D Carbon bulks28002.2602--[78]
    1D Carbon bulks30001.76734--[80]
    1D Carbon bulks31001.86896--[79]
    1D Carbon bulks (CVI+PIP)23001.9465-16[81]
    300066725
    1D Carbon rods (ICCG + CVI)30001.65569--[82]
    1D Carbon rods (CVI)30001.72675--
    2D Carbon bulks30002.2460-70[88]
    2D Carbon bulks30001.95443-52[84]
    2D Carbon bulks23001.92344193[81]
    3000345-
    3D-FMI-222--200[86]
    3D-Hercules 3D--345
    3D-FMI A27-130309
    3D-composites (N112)22002.01248[87]
    3D-composites (N11)22001.79220
    3D Carbon bulks (PIP)30001.95340[12]
    3D Carbon bulks (3CVI)30001.5811619[85]
    3D Carbon bulks (3CVI+4LPI)30001.8423542
    下载: 导出CSV

    Table  2.   Comparison of thermal conductivity of C/C composites with different carbon fiber reinforcements.

    SampleFiber volume fraction (%)Density (g cm−3)Thermal conductivity (W·m−1·K−1)Refs.
    ParallelPerpendicular
    T-300/AR-120561.5480.56.86[93]
    P-55/AR-120551.57135.5-
    Ribbon fiber /AR-120--148.2213.5
    P-120/Petroleum pitch452.00526-[94]
    K321/Petroleum pitch602.00691-
    P-130/Petroleum pitch602.10851-
    T-300/Pitch A511.92253.8674.245[95]
    F-180/Pitch A501.98260.3455.570
    P-100/Pitch A541.90320.0693.119
    Composites with ribbon fiber reinforcement-2.18837-[96]
    Composites with round fiber reinforcement-2.12649-
    下载: 导出CSV

    Table  3.   Comparison of thermal conductivity of C/C composites with different carbon matrices.

    SampleFiber volume fraction (%)Density (g cm−3)Thermal conductivity (W·m−1·K−1)Refs.
    PerpendicularParallel
    M40/Phenolic resin251.51-37[100]
    M40/Propane251.45-42
    T300/Pitch A611.9471197[95]
    T300/Pitch B551.9944182
    T300/Pitch C621.85113204
    Mesophase pitch based fiber/AR pitch-1.7421734[80]
    Mesophase pitch based fiber/SC pitch-1.7621672
    Mesophase pitch based fiber/MP pitch-1.7019705
    T300+T700/Coal tar pitch-1.8067128[101]
    T300+T700/Furfural acetone resin-1.814899
    T300+T700/Natural gas-1.7558118
    T300+T700/Xylene-1.7775148
    T300/Polymer resin311.6814152[99]
    T300/AR pitch311.6733200
    下载: 导出CSV
  • [1] Warzoha R J, Fleischer A S. Heat flow at nanoparticle interfaces[J]. Nano Energy,2014,6:137-158. doi: 10.1016/j.nanoen.2014.03.014
    [2] GUO Quan-gui, LIU Lang, SONG Jjin-ren, et al. Research activities on carbon based materials for plasma facing components of the HT-7U superconducting tokamak device in China[J]. New Carbon Materials,2001,16(3):64-68. doi: 10.3321/j.issn:1007-8827.2001.03.014
    [3] Li T Q, Xu Z H, Hu Z J, et al. Application of a high thermal conductivity C/C composite in a heat-redistribution thermal protection system[J]. Carbon,2010,48(3):924-925. doi: 10.1016/j.carbon.2009.10.043
    [4] CUI Zheng-wei, YUAN Gguan-ming, DONG Zhi-jun, et al. Research progress on carbon materials with high-oriented thermal conductivity[J]. Materials China,2020,39(6):450-457.
    [5] Wang Q, Han X H, Sommers A, et al. A review on application of carbonaceous materials and carbon matrix composites for heat exchangers and heat sinks[J]. International Journal of Refrigeration,2012,35(1):7-26.
    [6] Feng W, Qin M, Feng Y. Toward highly thermally conductive all-carbon composites: Structure control[J]. Carbon,2016,109:575-597. doi: 10.1016/j.carbon.2016.08.059
    [7] Tong T, Majumdar A, Zhao Y, et al. Indium assisted multiwalled carbon nanotube array thermal interface materials [C]. Conference on Thermal & Thermomechanical Phenomena in Electronics Systems, 2006.
    [8] FAN Zhen, YU Li-qiong, LI Wei, et al. Design and preparation of carbon/carbon composites with high thermal conductivity[J]. Materials China,2017,36(5):369-376.
    [9] Khan J, Momin S A, Mariatti M. A review on advanced carbon-based thermal interface materials for electronic devices[J]. Carbon,2020,168:65-112. doi: 10.1016/j.carbon.2020.06.012
    [10] LEI Zhi-bo, CAO Jian-guang, DONG Li-ning, et al. Study on application of high thermal conductivity materials in aerospace thermal management[J]. Materials China,2018,37(12):1039-1046.
    [11] Yu W, Liu C, Fan S. Advances of CNT-based systems in thermal management[J]. Nano Research,2021, 14: 2471–2490
    [12] FENG Zhi-hei, FAN Zhen, KONG Qing. Preparation of high thermal conductivity C/C composite[J]. Journal of Shanghai University (Natural Science),2014,20(1):51-58.
    [13] Zhang L, Zhang G, Liu C, et al. High-density carbon nanotube buckypapers with superior transport and mechanical properties[J]. Nano Letters,2012,12(9):4848-4852. doi: 10.1021/nl3023274
    [14] Lin W, Shang J, Gu W, et al. Parametric study of intrinsic thermal transport in vertically aligned multi-walled carbon nanotubes using a laser flash technique[J]. Carbon,2012,50(4):1591-1603. doi: 10.1016/j.carbon.2011.11.038
    [15] Ivanov I, Puretzky A, Eres G, et al. Fast and highly anisotropic thermal transport through vertically aligned carbon nanotube arrays[J]. Applied Physics Letters,2006,89(22):223110. doi: 10.1063/1.2397008
    [16] Wang Y, Huang L, Liu Y, et al. Minimizing purification-induced defects in single-walled carbon nanotubes gives films with improved conductivity[J]. Nano Research,2009,2(11):865-871. doi: 10.1007/s12274-009-9087-7
    [17] Hone J, Llaguno M C, Nemes N M, et al. Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films[J]. Applied Physics Letters,2000,77(5):666-668. doi: 10.1063/1.127079
    [18] Maldovan M. Sound and heat revolutions in phononics[J]. Nature,2013,503(7475):209-217. doi: 10.1038/nature12608
    [19] Guo X, Cheng S, Cai W, et al. A review of carbon-based thermal interface materials: Mechanism, thermal measurements and thermal properties[J]. Materials & Design,2021,209:109936.
    [20] Balandin A A. Thermal properties of graphene and nanostructured carbon materials[J]. Nature Materials,2011,10(8):569-581. doi: 10.1038/nmat3064
    [21] Savage G. Carbon-carbon Composites[M]. London: Chapman & Hall, 1993: 309.
    [22] Shin S, Wang Q, Luo J, et al. Advanced materials for high-temperature thermal transport[J]. Advanced Functional Materials,2020,30(8):1904815. doi: 10.1002/adfm.201904815
    [23] Ping L, Hou P X, Wang H, et al. Clean, fast and scalable transfer of ultrathin/patterned vertically-aligned carbon nanotube arrays[J]. Carbon,2018,133:275-282. doi: 10.1016/j.carbon.2018.03.032
    [24] Roussey A, Venier N, Fneich H, et al. One-pot preparation of iron/alumina catalyst for the efficient growth of vertically-aligned carbon nanotube forests[J]. Materials Science and Engineering: B,2019,245:37-46. doi: 10.1016/j.mseb.2019.05.005
    [25] Lu M, He Q, Li Y, et al. The effects of radio-frequency CF4 plasma on adhesion properties of vertically aligned carbon nanotube arrays[J]. Carbon,2019,142:592-598. doi: 10.1016/j.carbon.2018.10.092
    [26] Yuan G, Liu Z, Cao Z, et al. Direct growth of vertically well-aligned carbon nanotube arrays on atomic layer deposition of ZnO films[J]. Chemical Physics Letters,2021,773:138602. doi: 10.1016/j.cplett.2021.138602
    [27] Thapa A, Neupane S, Guo R, et al. Direct growth of vertically aligned carbon nanotubes on stainless steel by plasma enhanced chemical vapor deposition[J]. Diamond and Related Materials,2018,90:144-153. doi: 10.1016/j.diamond.2018.10.012
    [28] Thapa A, Guo J, Jungjohann K L, et al. Density control of vertically aligned carbon nanotubes and its effect on field emission properties[J]. Materials Today Communications,2020,22:100761. doi: 10.1016/j.mtcomm.2019.100761
    [29] Parveen S, Kumar A, Husain S, et al. Synthesis of highly dense and vertically aligned array of SWCNTs using a catalyst barrier layer: High performance field emitters for devices[J]. Physica B: Condensed Matter,2018,550:15-20. doi: 10.1016/j.physb.2018.08.016
    [30] Sun L, Zhu M, Zhao C, et al. Wafer-scale vertically aligned carbon nanotubes for broadband terahertz wave absorption[J]. Carbon,2019,154:503-509. doi: 10.1016/j.carbon.2019.08.001
    [31] Hou H, Schaper A K, Jun Z, et al. Large-scale synthesis of aligned carbon nanotubes using FeCl3 as floating catalyst precursor[J]. Chemistry of Materials,2003,15(2):580-585. doi: 10.1021/cm020970g
    [32] Charon E, Pinault M, Mayne-L’hermite M, et al. One-step synthesis of highly pure and well-crystallized vertically aligned carbon nanotubes[J]. Carbon,2021,173:758-768. doi: 10.1016/j.carbon.2020.10.056
    [33] Bulyarskiy S V, Gusarov G G, Lakalin A V, et al. Vertically aligned carbon nanotube arrays growth modeling at different temperatures and pressures in reactor[J]. Diamond and Related Materials,2020,103:107665. doi: 10.1016/j.diamond.2019.107665
    [34] Mierczynski P, Dubkov S V, Bulyarskii S V, et al. Growth of carbon nanotube arrays on various CtxMey alloy films by chemical vapour deposition method[J]. Journal of Materials Science & Technology,2018,34(3):472-480.
    [35] Murakami Y, Chiashi S, Miyauchi Y, et al. Growth of vertically aligned single-walled carbon nanotube films on quartz substrates and their optical anisotropy[J]. Chemical Physics Letters,2004,385(3):298-303.
    [36] Hata K, Futaba D N, Mizuno K, et al. Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes[J]. Science,2004,306(5700):1362. doi: 10.1126/science.1104962
    [37] Kang L, Hu Y, Zhong H, et al. Large-area growth of ultra-high-density single-walled carbon nanotube arrays on sapphire surface[J]. Nano Research,2015,8(11):3694-3703. doi: 10.1007/s12274-015-0869-9
    [38] Liu M, An H, Kumamoto A, et al. Efficient growth of vertically-aligned single-walled carbon nanotubes combining two unfavorable synthesis conditions[J]. Carbon,2019,146:413-419. doi: 10.1016/j.carbon.2019.01.109
    [39] Ji T, Feng Y, Qin M, et al. Thermal conducting properties of aligned carbon nanotubes and their polymer composites[J]. Composites Part A: Applied Science and Manufacturing,2016,91:351-369. doi: 10.1016/j.compositesa.2016.10.009
    [40] Vander Wal R L, Ticich T M, Curtis V E. Substrate–support interactions in metal-catalyzed carbon nanofiber growth[J]. Carbon,2001,39(15):2277-2289. doi: 10.1016/S0008-6223(01)00047-1
    [41] Li H H, Yuan G J, Shan B, et al. Atomic layer deposition of buffer layers for the growth of vertically aligned carbon nanotube arrays[J]. Nanoscale Research Letters,2019,14(1):119. doi: 10.1186/s11671-019-2947-5
    [42] Maruyama S, Einarsson E, Murakami Y, et al. Growth process of vertically aligned single-walled carbon nanotubes[J]. Chemical Physics Letters,2005,403(4-6):320-323. doi: 10.1016/j.cplett.2005.01.031
    [43] Pan Z, Zhu H, Zhang Z, et al. Patterned growth of vertically aligned carbon nanotubes on pre-patterned iron/silica substrates prepared by sol−gel and shadow masking[J]. The Journal of Physical Chemistry B,2003,107(6):1338-1344. doi: 10.1021/jp026850d
    [44] Teblum E, Noked M, Grinblat J, et al. Millimeter-tall carpets of vertically aligned crystalline carbon nanotubes synthesized on copper substrates for electrical applications[J]. The Journal of Physical Chemistry C,2014,118(33):19345-19355. doi: 10.1021/jp5015719
    [45] Miura S, Yoshihara Y, Asaka M, et al. Millimeter-tall carbon nanotube arrays grown on aluminum substrates[J]. Carbon,2018,130:834-842. doi: 10.1016/j.carbon.2018.01.075
    [46] Yilmaz M, Raina S, Hsu S H, et al. Growing micropatterned CNT arrays on aluminum substrates using hot-filament CVD process[J]. Materials Letters,2017,209:376-378. doi: 10.1016/j.matlet.2017.08.061
    [47] Aydinli A, Yuksel R, Unalan H E. Vertically aligned carbon nanotube– polyaniline nanocomposite supercapacitor electrodes[J]. International Journal of Hydrogen Energy,2018,43(40):18617-18625. doi: 10.1016/j.ijhydene.2018.05.126
    [48] Guellati O, Bégin D, Antoni F, et al. CNTs’ array growth using the floating catalyst-CVD method over different substrates and varying hydrogen supply[J]. Materials Science and Engineering: B,2018,231:11-17. doi: 10.1016/j.mseb.2018.03.001
    [49] Sato T, Sugime H, Noda S. CO2-assisted growth of millimeter-tall single-wall carbon nanotube arrays and its advantage against H2O for large-scale and uniform synthesis[J]. Carbon,2018,136:143-149. doi: 10.1016/j.carbon.2018.04.060
    [50] Zhang K, Yuen M M F, Gao J H, et al. Fabrication of high thermal conductivity carbon nanotube arrays by self assembled Fe3O4 particles[J]. CIRP Annals,2007,56(1):245-248. doi: 10.1016/j.cirp.2007.05.084
    [51] Fujii M, Zhang X, Xie H, et al. Measuring the thermal conductivity of a single carbon nanotube[J]. Physical Review Letters,2005,95(6):065502. doi: 10.1103/PhysRevLett.95.065502
    [52] Cao J X, Yan X H, Xiao Y, et al. Thermal conductivity of zigzag single-walled carbon nanotubes: Role of the umklapp process[J]. Physical Review B,2004,69(7):073407. doi: 10.1103/PhysRevB.69.073407
    [53] Pettes M T, Shi L. Thermal and structural characterizations of individual single-, double-, and multi-walled carbon nanotubes[J]. Advanced Functional Materials,2009,19(24):3918-3925. doi: 10.1002/adfm.200900932
    [54] Jun X, Fisher T S. Enhanced thermal contact conductance using carbon nanotube arrays[C]. The Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena In Electronic Systems (IEEE Cat. No. 04CH37543), 2004, 2: 549-555.
    [55] Ji K, Meng G, Yuan C, et al. Synergistic effect of Fe and Al2O3 layers on the growth of vertically aligned carbon nanotubes for gecko-inspired adhesive applications[J]. Journal of Manufacturing Processes,2018,33:238-244. doi: 10.1016/j.jmapro.2018.05.015
    [56] Li H, Yuan G, Shan B, et al. Chemical vapor deposition of vertically aligned carbon nanotube arrays: Critical effects of oxide buffer layers[J]. Nanoscale Research Letters,2019,14(1):106. doi: 10.1186/s11671-019-2938-6
    [57] Xiang R, Einarsson E, Murakami Y, et al. Diameter modulation of vertically aligned single-walled carbon nanotubes[J]. ACS Nano,2012,6(8):7472-7479. doi: 10.1021/nn302750x
    [58] Cui K, Kumamoto A, Rong X, et al. Synthesis of subnanometer-diameter vertically aligned single-walled carbon nanotubes with copper-anchored cobalt catalysts[J]. Nanoscale,2016,8(3):1608-1617. doi: 10.1039/C5NR06007A
    [59] Cha J H, Hasegawa K, Lee J, et al. Thermal properties of single-walled carbon nanotube forests with various volume fractions[J]. International Journal of Heat and Mass Transfer,2021,171(22):121076.
    [60] Kong Q, Bodelot L, Lebental B, et al. Novel three-dimensional carbon nanotube networks as high performance thermal interface materials[J]. Carbon,2018:359-369.
    [61] Tao T, Yang Z, Delzeit L, et al. Dense vertically aligned multiwalled carbon nanotube arrays as thermal interface materials[J]. IEEE Transactions on Components and Packaging Technologies,2007,30:92-100. doi: 10.1109/TCAPT.2007.892079
    [62] Qiu L, Guo P, Kong Q, et al. Coating-boosted interfacial thermal transport for carbon nanotube array nano-thermal interface materials[J]. Carbon,2019,145:725-733. doi: 10.1016/j.carbon.2019.01.085
    [63] Qiu L, Scheider K, Radwan S A, et al. Thermal transport barrier in carbon nanotube array nano-thermal interface materials[J]. Carbon,2017, 120:128-136.
    [64] Panzer M A, Duong H M, Okawa J, et al. Temperature-dependent phonon conduction and nanotube engagement in metalized single wall carbon nanotube films[J]. Nano Letters,2010,10(7):2395-2400. doi: 10.1021/nl100443x
    [65] Peacock M A, Roy C K, Hamilton M C, et al. Characterization of transferred vertically aligned carbon nanotubes arrays as thermal interface materials[J]. International Journal of Heat and Mass Transfer,2016,97:94-100. doi: 10.1016/j.ijheatmasstransfer.2016.01.071
    [66] Kaur S, Raravikar N, Helms B A, et al. Enhanced thermal transport at covalently functionalized carbon nanotube array interfaces[J]. Nature Communications,2014,5(1):3082. doi: 10.1038/ncomms4082
    [67] Zhang K, Chai Y, Yuen M, et al. Carbon nanotube thermal interface material for high-brightness light-emitting-diode cooling[J]. Nanotechnology,2008,19(21):215706. doi: 10.1088/0957-4484/19/21/215706
    [68] Yang C, Gong J, Kai Z, et al. Low temperature transfer of aligned carbon nanotube films using liftoff technique[C]. Electronic Components and Technology Conference, 2007. ECTC 07. Proceedings. 57th.
    [69] Kumanek B, Janas D. Thermal conductivity of carbon nanotube networks: A review[J]. Journal of Materials Science,2019,54(10):7397-7427. doi: 10.1007/s10853-019-03368-0
    [70] Ngo Q, Cru De N B A, Cassell A M, et al. Thermal conductivity of carbon nanotube composite films[J]. MRS Online Proceedings Library (OPL),2004:812: 1-6.
    [71] Yang J, Zhang W D, Gunasekaran S. An amperometric non-enzymatic glucose sensor by electrodepositing copper nanocubes onto vertically well-aligned multi-walled carbon nanotube arrays[J]. Biosensors and Bioelectronics,2010,26(1):279-284. doi: 10.1016/j.bios.2010.06.014
    [72] Thapa A, Wang X, Li W. Synthesis and field emission properties of Cu-filled vertically aligned carbon nanotubes[J]. Applied Surface Science,2021,537:148086. doi: 10.1016/j.apsusc.2020.148086
    [73] Ping L Q. Structure controlled preparation and performance research of vertically aligned carbon nanotube array thermal interface materials [D]. University of Science and Technology of China, 2019.
    [74] Wang M, Chen H, Lin W, et al. Crack-free and scalable transfer of carbon nanotube arrays into flexible and highly thermal conductive composite film[J]. ACS Applied Materials & Interfaces,2014,6(1):539-544.
    [75] Adams P M, Katzman H A, Rellick G S, et al. Characterization of high thermal conductivity carbon fibers and a self-reinforced graphite panel[J]. Carbon,1998,36(3):233-245. doi: 10.1016/S0008-6223(97)00189-9
    [76] Zhang Y. Y. Study on the preparation and properties of mesophase pitch-based carbon material with high thermal conductivity [D]. Beijing University of Chemical Technology, 2010.
    [77] MA Zhao-kun, SHI Jing-li, LIU Lang, et al. High thermal conductivity carbon materials made from mesophase pitch fibers[J]. Journal of Inorganic Materials,2006,21(5):1167-1172. doi: 10.3321/j.issn:1000-324X.2006.05.023
    [78] Gao X, Guo Q, Xu G, et al. Study on the preparation of large size and high thermal conductivity in one-direction of carbon/carbon composites by hot-pressing technology [C]. Proceedings of the 11th National Symposium on New Carbon Materials. 2013, 171-177.
    [79] Yuan G, Li X, Dong Z, et al. Pitch-based ribbon-shaped carbon-fiber-reinforced one-dimensional carbon/carbon composites with ultrahigh thermal conductivity[J]. Carbon,2014,68:413-425. doi: 10.1016/j.carbon.2013.11.018
    [80] LIN Jian-feng, YUAN Guan-ming, LI Xuan-ke, et al. Preparation of 1D C/C composites with high thermal conductivity[J]. Journal of Inorganic Materials,2013,28(12):1338-1344. doi: 10.3724/SP.J.1077.2013.13110
    [81] YAO Yu-ming, LI Hong, LIU Zheng-qi, et al. Microstructure and thermal conductivity of high thermal conductivity carbon/carbon composites[J]. Journal of Materials Engineering,2020,48(11):155-161. doi: 10.11868/j.issn.1001-4381.2019.000250
    [82] Zhang X, Li X, Yuan G, et al. Large diameter pitch-based graphite fiber reinforced unidirectional carbon/carbon composites with high thermal conductivity densified by chemical vapor infiltration[J]. Carbon,2017,114:59-69. doi: 10.1016/j.carbon.2016.11.080
    [83] Golecki I, Xue L, Leung R, et al. Properties of high thermal conductivity carbon-carbon composites for thermal management applications [C]. High-temperature Electronic Materials, Devices & Sensors Conference, 1998.
    [84] Feng Z H, Fan Z, Kong Q, et al. Effect of high temperature treatment on the structure and thermal conductivity of 2D carbon/carbon composites with a high thermal conductivity[J]. New Carbon Materials,2014,29(5):357-362. doi: 10.1016/S1872-5805(14)60142-6
    [85] Li B L, Guo J G, Xun B, et al. Preparation, microstructure and properties of three-dimensional carbon/carbon composites withhigh thermal conductivity[J]. New Carbon Materials,2020,35(5):567-575. doi: 10.1016/S1872-5805(20)60510-8
    [86] Snead L L, Burchell T D. Thermal conductivity degradation of graphites due to nuetron irradiation at low temperature[J]. Journal of Nuclear Materials,1995,224(3):222-229. doi: 10.1016/0022-3115(95)00071-2
    [87] Bonal J P, Wu C H. Neutron irradiation effects on the thermal conductivity and dimensional stability of carbon fiber composites at divertor conditions[J]. Journal of Nuclear Materials,1996,228(2):155-161. doi: 10.1016/S0022-3115(95)00247-2
    [88] Golecki I, Xue L, Leung R, et al. Properties of high thermal conductivity carbon-carbon composites for thermal management applications [C]. High-Temperature Electronic Materials, Devices and Sensors Conference (Cat. No. 98EX132), 1998: 190-195.
    [89] Ohno H. High performance pitch based carbon fibersand their application[J]. Verbundwerkstoffe,2009:265-269.
    [90] Gallego N C, Edie D D. Structure–property relationships for high thermal conductivity carbon fibers[J]. Composites Part A: Applied Science and Manufacturing,2001,32(8):1031-1038. doi: 10.1016/S1359-835X(00)00175-5
    [91] Robinson K E, Edie D D. Microstructure and texture of pitch-based ribbon fibers for thermal management[J]. Carbon,1996,34(1):13-36. doi: 10.1016/0008-6223(95)00129-8
    [92] ZHAO Jia-xiang. A brief introduction to nippon graphite fiber corporation, Japan[J]. Hi-tech Fiber & Application,2001,26(4):17-20. doi: 10.3969/j.issn.1007-9815.2001.04.003
    [93] Klett J W, Edie D D. Flexible towpreg for the fabrication of high thermal conductivity carbon/carbon composites[J]. Carbon,1995,33(10):1485-1503. doi: 10.1016/0008-6223(95)00103-K
    [94] Bowers D A, Davis J W, Dinwiddie R B. Development of 1-D carbon composites for plasma-facing components[J]. Journal of Nuclear Materials,1994,212-215:1163-1167. doi: 10.1016/0022-3115(94)91014-6
    [95] Manocha L M, Warrier A, Manocha S, et al. Thermophysical properties of densified pitch based carbon/carbon materials—II. Bidirectional composites[J]. Carbon,2006,44(3):488-495. doi: 10.1016/j.carbon.2005.08.013
    [96] Ma Z, Shi J, Song Y, et al. Carbon with high thermal conductivity, prepared from ribbon-shaped mesosphase pitch-based fibers[J]. Carbon,2006,44(7):1298-1301. doi: 10.1016/j.carbon.2006.01.015
    [97] Luo R Y, Cheng Y H. Effects of preform and pyrolytic carbon structure on thermophysical properties of 2D carbon/carbon composites[J]. Chinese Journal of Aeronautics,2004,17(2):112-118. doi: 10.1016/S1000-9361(11)60223-9
    [98] Pierson H O, Northrop D A. Carbon-felt, carbon-matrix composites: Dependence of thermal and mechanical properties on fiber precursor and matrix structure[J]. Journal of Composite Materials,1975,9(2):118-137. doi: 10.1177/002199837500900203
    [99] Jie C, Xiang X, Peng X. Thermal conductivity of unidirectional carbon/carbon composites with different carbon matrixes[J]. Materials & Design,2009,30(4):1413-1416.
    [100] Michalowski J, Mikociak D, Konsztowicz K J, et al. Thermal conductivity of 2D C–C composites with pyrolytic and glass-like carbon matrices[J]. Journal of Nuclear Materials,2009,393(1):47-53. doi: 10.1016/j.jnucmat.2009.05.004
    [101] Liu X, Deng H L, Zheng J H, et al. Mechanical and thermal conduction properties of carbon/carbon composites with different carbon matrix microstructures[J]. New Carbon Materials,2020,35(5):576-584. doi: 10.1016/S1872-5805(20)60511-X
    [102] Zaman W, Li K Z, Ikram S, et al. Morphology, thermal response and anti-ablation performance of 3D-four directional pitch-based carbon/carbon composites[J]. Corrosion Science,2012,61:134-142. doi: 10.1016/j.corsci.2012.04.036
    [103] Araki M, Kude Y, Sohda Y, et al. Development of 3D-based CFC with high thermal conductivity for fusion application[J]. Fusion Technology,1997:359-362.
    [104] CAO Cui-wei, LI Zhao-qian, LI He-jun, et al. Thermophysical and ablative properties of axial carbon rod weaved 4D carbon/carbon composites[J]. Journal of Solid Rocket Technology,2011,34(1):113-118. doi: 10.3969/j.issn.1006-2793.2011.01.025
    [105] ZHAO Jian-guo, LI Ke-zhi, LI He-jun, et al. Research on the thermal conductivity of C/C composites[J]. Acta Aeronautica Astronautica Sinica,2005,26(3):501-504.
    [106] Manocha L M, Warrier A, Manocha S, et al. Thermophysical properties of densified pitch based carbon/carbon materials—I. Unidirectional composites[J]. Carbon,2006,44(3):480-487. doi: 10.1016/j.carbon.2005.08.012
    [107] Chen J, Xiong X, Xiao P. The effect of MWNTs on the microstructure of resin carbon and thermal conductivity of C/C composites[J]. Solid State Sciences,2009,11(11):1890-1893. doi: 10.1016/j.solidstatesciences.2009.07.019
    [108] Chen J, Xiong X, Xiao P. The effect of carbon nanotube growing on carbon fibers on the microstructure of the pyrolytic carbon and the thermal conductivity of carbon/carbon composites[J]. Materials Chemistry and Physics,2009,116(1):57-61. doi: 10.1016/j.matchemphys.2009.02.044
    [109] Li J, Luo R, Yan Y. Effect of carbon nanofibers on the infiltration and thermal conductivity of carbon/carbon composites[J]. Materials Research Bulletin,2011,46(9):1437-1442. doi: 10.1016/j.materresbull.2011.05.004
    [110] Lin H, Li H, Tian X, et al. Texture-inducing effect of SiC nanowires and their influence on thermal conductivities of carbon/carbon composites up to 1900 °C[J]. Diamond and Related Materials,2018,90:221-228. doi: 10.1016/j.diamond.2018.10.026
    [111] LI You, YUAN Guan-ming, LI Xuan-ke, et al. Effects of a natural flake graphite addition to mesophase pitch on the structure and properties of unidirectional C/C composites[J]. New Carbon Materials,2018,33(2):173-182.
    [112] Yuan G, Li Y, Long X, et al. Tuning anisotropic thermal conductivity of unidirectional carbon/carbon composites by incorporating carbonaceous fillers[J]. Journal of Materials Science,2020,55(12):5079-5098. doi: 10.1007/s10853-020-04357-4
    [113] Vaughn W, Shinn E, Rawal S, et al. Carbon-carbon composite radiator development for the EO-1 spacecraft[J]. NASA Langley Technical Report Server,1998:1400-1415.
    [114] Juhasz A J. Finned carbon-carbon heat pipe with potassium working fluid[J]. Nasa Tech Briefs,2010,34(5):53-54.
    [115] Kowbel W, Webb J, Withers J. Low-cost pitch and phenolic-based C-C composites for passive thermal management[J]. International SAMPE Symposium and Exhibition (Proceedings),1999:1878-1887.
    [116] Kowbel W, Champion W, Withers J, et al. Low Cost, High Thermal Conductivity Composite Heat Spreaders for Power Electronics [M]. Sixteenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium (Cat. No. 00CH37068), 2000: 195-200.
    [117] Ohlhorst C W, Glass D E, Bruce W E, et al. Development of X-43A mach 10 leading edges, 56th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law: American Institute of Aeronautics and Astronautics, 2005.
    [118] Kowbel W, Loutfy R. Dual space technology transfer [C]. AIP Conference Proceddings, 2009.
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  60
  • HTML全文浏览量:  20
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-30
  • 修回日期:  2021-08-24
  • 网络出版日期:  2021-09-03

目录

    /

    返回文章
    返回