留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高导热聚酰亚胺石墨膜/环氧树脂复合材料的制备与性能表征

李文龙 李轩科 申克 徐辉涛 郭建光 吴勇

李文龙, 李轩科, 申克, 徐辉涛, 郭建光, 吴勇. 高导热聚酰亚胺石墨膜/环氧树脂复合材料的制备与性能表征[J]. 新型炭材料. doi: 10.1016/S1872-5805(21)60091-4
引用本文: 李文龙, 李轩科, 申克, 徐辉涛, 郭建光, 吴勇. 高导热聚酰亚胺石墨膜/环氧树脂复合材料的制备与性能表征[J]. 新型炭材料. doi: 10.1016/S1872-5805(21)60091-4
LI Wen-long, LI Xuan-ke, SHEN Ke, XU Hui-tao, GUO Jian-guang, WU Yong. Preparation and characterization of graphitized polyimide film/epoxy resin composites with high thermal conductivities[J]. NEW CARBON MATERIALS. doi: 10.1016/S1872-5805(21)60091-4
Citation: LI Wen-long, LI Xuan-ke, SHEN Ke, XU Hui-tao, GUO Jian-guang, WU Yong. Preparation and characterization of graphitized polyimide film/epoxy resin composites with high thermal conductivities[J]. NEW CARBON MATERIALS. doi: 10.1016/S1872-5805(21)60091-4

高导热聚酰亚胺石墨膜/环氧树脂复合材料的制备与性能表征

doi: 10.1016/S1872-5805(21)60091-4
详细信息
    作者简介:

    李文龙,硕士研究生. E-mail:wenlongli@hnu.edu.cn

    通讯作者:

    李轩科,教授. E-mail:xkli8524@sina.com

  • 中图分类号: TQ327.6

Preparation and characterization of graphitized polyimide film/epoxy resin composites with high thermal conductivities

More Information
  • 摘要: 将环氧树脂(EP)分别涂敷于聚酰亚胺石墨带(GPTs)和聚酰亚胺石墨膜(GPFs),通过真空热压成型与分别采用堆叠和叠层方法制备得到GPTs/EP复合材料和GPFs/EP复合材料。借助 XRD、SEM和PLM等手段对GPF及其环氧树脂基复合材料的晶体结构、形貌和光学织构进行表征,并研究GPF的体积分数和尺寸对其复合材料导热性能的影响。结果表明,相比于GPFs/EP复合材料,GPTs/EP复合材料的导热性能在不同方向显示出较大波动,其热导率和热扩散系数总体上随GPF体积分数的增加而增大,GPF体积分数为80%时热导率为453~615 W (m·K)−1。而对应的 80 % GPFs/EP复合材料热导率稳定可达894 W (m·K)−1,并具有高取向的“三明治”结构。但在平行于热压方向上两类复合材料热导率都很低,GPF体积分数为80%时,GPTs/EP复合材料和GPFs/EP复合材料的热导率分别为1.82 W (m·K)−1和1.15 W (m·K)−1
  • 图  1  两类复合材料热压制备过程及其沿导热膜平面方向热传导示意图

    Figure  1.  Schematics of hot-pressing preparations and heat conduction along the plane direction of composites.

    图  2  聚酰亚胺石墨膜掺标准Si的XRD谱图

    Figure  2.  XRD patterns of graphitized polyimide film (GPF) doped with standard Si.

    图  3  (a、d)聚酰亚胺石墨膜,(b、e)80% GPT堆叠压制GPT/EP和(c、f)80% GPF叠层压制GPF/EP复合材料在垂直于热压方向的SEM照片

    Figure  3.  (a、d) SEM images of GPF, (b、e) GPT/EP composite stacked pressing with 80% GPT and (c、f) GPF/EP composite laminated pressing with 80% GPF perpendicular to the hot-pressing direction.

    图  4  不同体积分数短切GPT/EP复合材料和80%体积占比的GPF/EP复合材料分别在(a)垂直于热压方向和(b)平行于热压方向的XRD谱图

    Figure  4.  XRD patterns of GPT/EP composite with different volume fractions of GPT and GPF/EP composite with 80% GPF at (a) Plane A and (b) Plane B perpendicular and parallel to the hot-pressing direction, respectively.

    图  5  (a、b、c)80% GPT/EP复合材料和(d、e、f)80% GPF/EP复合材料B面 (平行于热压方向)的SEM照片

    Figure  5.  SEM images of the cross-section of Plane B (parallel to the hot-pressing direction) of (a、b、c) GPT/EP composites with 80% GPT and (d、e、f)GPF/EP composites with 80% GPF.

    图  6  (a-f)不同体积分数GPT/EP复合材料和(g-i)80% GPF/EP复合材料在平行于热压方向的PLM照片

    Figure  6.  PLM images of the cross-section of Plane B (parallel to the hot-pressing direction) of GPT/EP composites with (a-f) a-24%, b-36%, c-45%, d-54%, e-65% and f-80% GPT as well as (g-i) GPF/EP composite with 80% GPF.

    图  8  在垂直于热压方向不同角度上的复合材料热扩散系数样品切割及其测试示意图

    Figure  8.  Schematics of sample cutting and thermal diffusion coefficient measurement of composites at different cutting angles perpendicular to the hot-pressing direction.

    图  9  在垂直于热压方向不同体积含量(a)GPT/EP复合材料室温热扩散系数和(b)80 vol.%GPF/EP复合材料的室温热扩散系数随不同切割角度的变化

    Figure  9.  Thermal diffusivity perpendicular to the hot-pressing direction of (a) GPT/EP composites with different GPT volume fractions and (b) 80% GPF/EP composites at room temperature varying with sample cutting angles, respectively.

    图  10  GPF及其80%GPF/EP复合材料垂直于热压方向的热扩散系数随测试温度的变化

    Figure  10.  Thermal diffusivity perpendicular to the hot-pressing direction of GPF and 80% GPF/EP composites varying with testing temperatures.

    图  11  纯环氧树脂及其80%GPT/EP和GPF/EP复合材料分别在热压方向(A面)和垂直于热压方向(B面)上的压缩强度

    Figure  11.  Compressive strength of pure epoxy resin and 80% GPT/EP and GPF/EP composites in plane A and plane B.

    表  1  不同体积分数的GPT/EP复合材料与80% GPF/EP复合材料的密度和比热容

    Table  1.   Bulk density and specific heat capacity of GPT/EP composites with various volume fractions of GPT as well as GPF/EP composite with 80% GPF.

    GPT/EP compositesGPF/EP composites
    Vol.(%)24364554658080
    ρ(g cm-3)1.151.251.301.351.411.491.49
    C (J/(g·K))1.591.431.351.281.201.101.10
    ρ×C(J (K·cm-3))1.831.791.761.731.691.641.64
    下载: 导出CSV
  • [1] Feng W, Qin M M, Feng Y Y. Toward highly thermally conductive all-carbon composites: Structure control[J]. Carbon,2016,109:575-597. doi: 10.1016/j.carbon.2016.08.059
    [2] Inagaki M, Ohta N, Hishiyama Y. Aromatic polyimides as carbon precursors[J]. Carbon,2013,61:1-21. doi: 10.1016/j.carbon.2013.05.035
    [3] Murakami M, Nishiki N, Nakamura K, et al. High-quality and highly oriented graphite block from polycondensation polymer films[J]. Carbon,1992,30(2):255-262. doi: 10.1016/0008-6223(92)90088-E
    [4] 李海英, 高晓晴, 张国兵, 等. 聚酰亚胺薄膜制备高定向石墨材料的研究[J]. 功能材料,2006,37(1):106-108. doi: 10.3321/j.issn:1001-9731.2006.01.031

    LI Hai-yin, GAO Xiao-qin, ZHANG Guo-bin, et al. Research on the highly oriented graphite from polyimide films[J]. Journal of Functional Materials,2006,37(1):106-108. doi: 10.3321/j.issn:1001-9731.2006.01.031
    [5] Yu G C, Wu L Z, Feng L J, et al. Enhancing the thermal conductivity of carbon fiber reinforced polymer composite laminates by coating highly oriented graphite films[J]. Materials and Design,2015,88(25):1063-1070.
    [6] Jiang B, Wang H T, Wen G W, et al. Copper-graphite-copper sandwich: Superior heat spreader with excellent heat-dissipation ability and good weldability[J]. RSC Advances,2016,6(30):25128-25136. doi: 10.1039/C6RA00057F
    [7] 王荣国, 武卫莉, 谷万里. 复合材料概论 [M]. 哈尔滨: 哈尔滨工业大学出版社, 1999: 105-107.

    WANG Rong-guo, WU Wei-li, GU Wan-li. Introduction of Composite Materials [M]. Harbin, Harbin Institute of Technology Press, 1999: 105-107.
    [8] 李伟, 李贺军, 张守阳, 等. 石墨化处理对双层热解炭基 2D C/C复合材料微观结构的影响[J]. 新型炭材料,2011,26(5):328-334.

    LI Wei, LI He-jun, ZHANG Shou-yang, et al. Effect of high temperature treatment on the microstructure and mechanical properties of binary layer textured 2D C/C composites[J]. New Carbon Materials,2011,26(5):328-334.
    [9] Takahashi H, Kuroda H, Akamatu H. Correlation between stacking order and crystallite dimensions in carbons[J]. Carbon,1965,2(4):432-433. doi: 10.1016/0008-6223(65)90015-1
    [10] 高晓晴, 郭全贵, 史景利, 等. 短切炭纤维-炭复合材料的制备及传导性能和微观结构的研究[J]. 新型炭材料,2005,20(1):18-20. doi: 10.3321/j.issn:1007-8827.2005.01.004

    GAO Xiao-qing, GUO Quan-gui, SHI Jing-li, et al. The fabrication of chopped carbon fiber-carbon composites and their thermal/electrical conductivity and microstructure[J]. New Carbon Materials,2005,20(1):18-20. doi: 10.3321/j.issn:1007-8827.2005.01.004
    [11] 许聚良, 鄢文, 吴大军. XRD分峰拟合法测定炭材料的石墨化度和结晶度[J]. 武汉科技大学学报,2009,32(5):522-525.

    XU Ju-liang, YAN Wen, WU Da-jun. Measuring the graphitization and crystallinity of carbon material by XRD peak separation method[J]. Journal of Wuhan University of Science and Technology,2009,32(5):522-525.
    [12] Yuan G M, Li X K, Yi J, et al. Mesophase pitch-based graphite fiber-reinforced acrylonitrile butadiene styrene resin composites with high thermal conductivity[J]. Carbon,2015,95:1007-1019. doi: 10.1016/j.carbon.2015.09.019
    [13] Inagaki M, Kaburagi Y, Hishiyama Y. Thermal management material: graphite[J]. Advanced Engineering Materials,2014,16(5):494-506. doi: 10.1002/adem.201300418
    [14] Fu Y X, He Z X, Mo D C, et al. Thermal conductivity enhancement with different fillers for epoxy resin adhesives[J]. Applied Thermal Engineering,2014,66(1-2):493-498. doi: 10.1016/j.applthermaleng.2014.02.044
    [15] Zhang Y P, Cameron J. The evaluation of the flexural strength of cured epoxy resins from heat capacity data[J]. International Journal of Polymeric Materials and Polymeric Biomaterials,1992,17(1-2):103-111. doi: 10.1080/00914039208041104
    [16] Koráb J, Štefánik P, Kavecký Š, et al. Thermal conductivity of unidirectional copper matrix carbon fibre composites[J]. Composites Part A: Applied Science and Manufacturing,2002,33(4):577-581. doi: 10.1016/S1359-835X(02)00003-9
    [17] Johnson M T, Childers A S, Ram J, et al. Thermal conductivity of wood-derived graphite and copper-graphite composites produced via electrodeposition[J]. Composites Part A: Applied Science and Manufacturing,2013,53(19):182-189.
    [18] Progelhof R C, Throne J L, Ruetsch R R, et al. Methods for predicting the thermal conductivity of composite systems: A review[J]. Polymer Engineering and Science,1976,16(9):615-625. doi: 10.1002/pen.760160905
    [19] 乌云其其格. 碳纤维表面处理[J]. 高科技纤维与应用,2001,26(5):24-28. doi: 10.3969/j.issn.1007-9815.2001.05.006

    WUYUN Qiqi-ge. Surface treatment of carbon fibers[J]. Hi-Tech Fiber & Application,2001,26(5):24-28. doi: 10.3969/j.issn.1007-9815.2001.05.006
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  18
  • HTML全文浏览量:  9
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-26
  • 修回日期:  2020-05-25
  • 网络出版日期:  2021-09-06

目录

    /

    返回文章
    返回