留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

定长炭纤维增强树脂复合材料的制备及其各向同性力学性能

向雨欣 申克 吴昊 何智成 李轩科

向雨欣, 申克, 吴昊, 何智成, 李轩科. 定长炭纤维增强树脂复合材料的制备及其各向同性力学性能. 新型炭材料, 2021, 36(6): 1188-1194. doi: 10.1016/S1872-5805(21)60094-X
引用本文: 向雨欣, 申克, 吴昊, 何智成, 李轩科. 定长炭纤维增强树脂复合材料的制备及其各向同性力学性能. 新型炭材料, 2021, 36(6): 1188-1194. doi: 10.1016/S1872-5805(21)60094-X
XIANG Yu-xin, SHEN Ke, WU Hao, HE Zhi-cheng, LI Xuan-ke. Preparation of fixed length carbon fiber reinforced plastic composite sheets with isotropic mechanical properties. New Carbon Mater., 2021, 36(6): 1188-1194. doi: 10.1016/S1872-5805(21)60094-X
Citation: XIANG Yu-xin, SHEN Ke, WU Hao, HE Zhi-cheng, LI Xuan-ke. Preparation of fixed length carbon fiber reinforced plastic composite sheets with isotropic mechanical properties. New Carbon Mater., 2021, 36(6): 1188-1194. doi: 10.1016/S1872-5805(21)60094-X

定长炭纤维增强树脂复合材料的制备及其各向同性力学性能

doi: 10.1016/S1872-5805(21)60094-X
基金项目: 国家自然科学基金(U1864207).
详细信息
    作者简介:

    向雨欣,硕士研究生. E-mail:xiangyuxin@hnu.edu.cn

    通讯作者:

    李轩科,教授. E-mail:xkli8524@sina.com

  • 中图分类号: TQ342+.74

Preparation of fixed length carbon fiber reinforced plastic composite sheets with isotropic mechanical properties

Funds: National Natural Science Foundation of China (U1864207).
More Information
  • 摘要: 本文分别将不同配比的30 mm定长炭纤维与乙烯基树脂基体预混合,搅拌均匀后得到片状模塑料(SMCs),再将不同纤维体积分数的SMCs通过真空热压成型工艺制备出不同面内力学各向同性的定长炭纤维增强树脂基复合材料(CFRP)。研究了不同纤维体积分数(15%~40%)的CFRP的拉伸和弯曲强度的异同,及纤维体积分数对材料面内力学各向同性特征的影响。由力学性能测试与断面分析结果可知:25%~30%纤维体积分数的CFRP中,纤维在树脂中分散性优异,不同方向上的拉伸强度离散系数仅为2%,各向同性特征最为显著;当CFRP中的炭纤维体积分数增加到一定程度时,其拉伸和弯曲强度均表现出先升后降的趋势,拉伸强度在25%时达到最大值(141.4 MPa),弯曲强度在30%时达到最大值(549.0 MPa)。同比15%纤维体积分数的CFRP,力学性能明显提高。
  • FIG. 1086.  FIG. 1086.

    FIG. 1086..  FIG. 1086.

    图  1  SMC的制备流程图

    Figure  1.  Flowchart of SMC process.

    图  2  强度试样形状和尺寸:(a) 拉伸试样和 (b) 弯曲试样

    Figure  2.  Strength test specimen shape and dimension: (a) tensile test and (b) flexural test.

    图  3  拉伸试验后典型定长CFRP的试样照片

    Figure  3.  Typical photographs of fixed length CFRP specimens after tensile test.

    图  4  6组不同体积分数拉伸试样的断面形貌

    Figure  4.  SEM images of fracture surface of 6 kinds of tensile test samples.

    图  5  不同体积分数定长纤维CFRP的(a)最大拉伸强度及(b)弯曲强度

    Figure  5.  (a) Tensile strength and (b) flexural strength of fixed length-CFRP with different fiber volume fractions.

    图  6  应力-应变曲线:(a)纯乙烯基树脂板及(b)各组定长CFRP

    Figure  6.  Stress-strain curves of (a) pure vinyl resin and (b) CFRP with different fiber volume fractions.

    图  7  定长CFRP拉伸试样切割角度示意图

    Figure  7.  Tensile specimen cutting angle diagram of fixed length CFRP.

    图  8  不同纤维体积分数定长CFRP在各角度拉伸强度趋势图

    Figure  8.  Tensile strength trend charts of composites with different fiber volume fractions in different angles.

    表  1  不同纤维体积分数复合材料在各方向上拉伸强度

    Table  1.   Tensile strength of composites with different fiber volume fractions in different directions.

    Fiber volume
    fractions
    0°direction
    (MPa)
    30°direction
    (MPa)
    60°direction
    (MPa)
    90°direction
    (MPa)
    Standard
    deviation
    Discrete
    coefficient
    15%45.978.082.459.416.925%
    20%115.199.496.697.88.78%
    25%139.1142.7143.9139.92.32%
    30%135.5136.9130.2141.44.63%
    35%116.7129.2120.9129.26.35%
    40%127.0111.6122.298.812.611%
    下载: 导出CSV
  • [1] 罗瑞盈. 炭纤维复合材料 [M]. 北京: 化学工业出版社, 2017.

    LUO Rui-ying. Carbon Fiber Reinforced Composites[M]. Beijing: Chemical Industry Press, 2017.
    [2] 堵同亮, 彭雄奇等. 炭纤维编织复合材料冲压成形实验与仿真分析[J]. 功能材料,2013,44(16):2401-2405. doi: 10.3969/j.issn.1001-9731.2013.16.025

    Du T L, Peng X Q, Guo Z Y, et al. Experimental and numerical stamping of carbon woven fabrics[J]. Journal of Functional Materials,2013,44(16):2401-2405. doi: 10.3969/j.issn.1001-9731.2013.16.025
    [3] 沈观林, 胡更开. 复合材料力学 [M]. 北京: 清华大学出版社, 2006.

    SHEN Guan-lin, HU Geng-kai. Composite Mechanics[M]. Beijing: Tsinghua University Press, 2006.
    [4] Lomov S V, Belov E B, Bischoff T, et al. Carbon composites based on multiaxial multiply stitched preforms. Part 1. Geometry of the preform[J]. Composites Part A-Applied Science and Manufacturing,2002,33(9):1171-1183. doi: 10.1016/S1359-835X(02)00090-8
    [5] 杨彩云, 李嘉禄. 三维机织复合材料力学性能的各向异性[J]. 复合材料学报,2006,23(2):59-64. doi: 10.3321/j.issn:1000-3851.2006.02.011

    Yang C Y, Li J L. Mechanical anisotropy of threedimensional woven composites[J]. Acta Materiae Compositae Sinica,2006,23(2):59-64. doi: 10.3321/j.issn:1000-3851.2006.02.011
    [6] Li D S, Nan J, Zhao C Q, et al. Experimental study on the tension fatigue behavior and failure mechanism of 3D multiaxial warp knitted composites[J]. Composites Part B-Engineering,2015,68:126-135. doi: 10.1016/j.compositesb.2014.08.042
    [7] 高哲, 蒋高明, 马丕波. 炭纤维多轴向经编复合材料的应用与发展[J]. 纺织学报,2013,34(12):144-151.

    Gao Z, Jiang G M, Ma P B. Application and development of carbon fiber multi-axial warp-knitted fabric reinforced composites[J]. Journal of Textile Research,2013,34(12):144-151.
    [8] 彭金涛, 任天斌. 炭纤维增强树脂基复合材料的最新应用现状[J]. 中国胶黏剂,2014,23(08):48-52.

    Peng J T, Reng T B. The latest application status ofcarbon fiber reinforced resin matrix composites[J]. China Adhesives,2014,23(08):48-52.
    [9] 鲍宏琛, 刘广彦. 准各向同性纤维增强复合材料层合板的开孔拉伸破坏模拟[J]. 复合材料学报,2016,33(05):1026-1032.

    Bao H C, Liu G Y. Simulation on damage in quasi-isotropic fiber-reinforced composite laminates under open-hole tension[J]. Acta Materiea Compositae Sinica,2016,33(05):1026-1032.
    [10] 夏瑜, 曾春梅, 郭培基. 主动成形准各向同性CFRP复合材料反射镜的铺层设计[J]. 红外与激光工程,2012,41(07):1885-1892. doi: 10.3969/j.issn.1007-2276.2012.07.036

    Xia Y, Zeng C M, Guo P J. Lay-up design of quasi-isotropic CFRP mirror for active forming[J]. Infrared and Laser Engineering,2012,41(07):1885-1892. doi: 10.3969/j.issn.1007-2276.2012.07.036
    [11] 曹晚霞, 林兰天, 陈春敏, 等. 各向同性、各向异性材料冲击应力波传播特性研究[J]. 上海纺织科技,2017,45(04):5-9.

    Cao W X, Lin L T, Chen C M, et al. Characteristics of transmission of impact stress waves upon anisotropic or isotropic materials[J]. SHANGHAI Textile Science& Technology,2017,45(04):5-9.
    [12] 张鸣. 各向同性树脂基多层复合材料吸波特性分析[D]. 黑龙江: 哈尔滨工程大学, 2011.

    ZHANG Ming. Absorbing characteristics of isotropic resin-based multilayer composite material[D]. Heilong Jiang: Harbin Engineering University, 2011.
    [13] Wulfsberg J, Herrmann A, Ziegmann G, et al. Combination of carbon fiber sheet moulding compound and prepreg compression moulding in aerospace industry[J]. Procedia Engineering,2014,81:1601-1607. doi: 10.1016/j.proeng.2014.10.197
    [14] 江真. 短切炭纤维/乙烯基酯树脂片状模塑料拉伸性能分析 [D]. 黑龙江: 哈尔滨工业大学, 2018.

    JIANG Zhen. Tensile properties of chopped carbon fiber reinfor-ced vinyl ester resin sheet molding compound[D]. Heilong Jiang:Harbin Institute of Technology, 2018
    [15] 王成忠, 于运花. 炭纤维/乙烯基酯树脂拉挤复合材料界面性能研究[J]. 复合材料学报,2003,20(5):68-72. doi: 10.3321/j.issn:1000-3851.2003.05.013

    Wang C Z, Yu Y H. Study on the interfacial properties of pultruded carbon fiber/vinyl ester resin composites[J]. Acta Materiea Compositae Sinica,2003,20(5):68-72. doi: 10.3321/j.issn:1000-3851.2003.05.013
    [16] 刘玉婷, 姚婷婷. 氧化石墨烯/炭纤维复合增强体的制备及对环氧树脂复合材料界面性能影响[J]. 新型炭材料,2018,33(6):595-604.

    Liu Y T, Yao T T. Preparation of carbon fibers grafted to grapheme oxide as a reinforcement for epoxy matrix composites[J]. New Carbon Materials,2018,33(6):595-604.
    [17] 中国国家标准化管理委员会. 纤维增强塑料拉伸性能试验方法: GB/T 1447—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People’s Republic of China. Fiber-reinforced plastics composites Determination of tensile properties: GB/T 1447—2005[S]. Beijing: China Standards Press, 2005.
    [18] 中国国家标准化管理委员会. 纤维增强塑料弯曲性能试验方法: GB/T 1449—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People’s Republic of China. Fiber-reinforced plastics composites Determination of flexural properties: GB/T 1449—2005[S]. Beijing: China Standards Press, 2005.
    [19] 邓富泉. 单向连续炭纤维-玻璃纤维层间混杂增强环氧树脂基复合材料的力学性能[J]. 复合材料学报,2018,35(1):103-109.

    Deng F Q. Mechanical properties of unidirectional carbon fiber-glass fiber hybrid reinforced epoxy composites in interlaminar layer[J]. Acta Materiea Compositae Sinica,2018,35(1):103-109.
    [20] Truong T C, Vettori M, Lomov S, et al. Carbon composites based on multi-axial multi-ply stitched preforms. Part 4. Mechanical properties of composites and damage observation[J]. Composites: Part A-Applied Science and Manufacturing,2005,36(2005):1207-1221.
    [21] De PJMF, Sergio M, Cerqueira R M. Comparison of tensile strength of different carbon fabric reinforced epoxy composites[J]. Materials Research,2006,9(1):83-89. doi: 10.1590/S1516-14392006000100016
    [22] Wu J, Zhang X X, Li Z, et al. Toward high-performance capacitive potassium-ion storage: A superior anode material from silicon carbide-derived carbon with a well-developed pore structure[J]. Advanced Functional Materials,2020,30(40):2004348.
    [23] Zhang R B, Li Z H, Sun Q Y, et al. Design and characterization of the carbon fiber tube reinforced polymer composite for full ocean depth submersibles[J]. Composites Science and Technology,2022,217:109074. doi: 10.1016/j.compscitech.2021.109074
    [24] Mithil Kamble, Aniruddh Vashisth, et al. Reversing fatigue in carbon-fiber reinforced vitrimer composites[J]. Carbon,2022,187:108-114. doi: 10.1016/j.carbon.2021.10.078
    [25] Dong Z J, Sun B, Zhu H, et al. A review of aligned carbon nanotube arrays and carbon/carbon composites: fabrication, thermal conduction properties and applications in thermal management[J]. New Carbon Material,2021,36(5):873-896. doi: 10.1016/S1872-5805(21)60090-2
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  505
  • HTML全文浏览量:  223
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-04
  • 修回日期:  2019-07-24
  • 网络出版日期:  2021-11-12
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回