留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress on carbon-based materials for electromagnetic wave absorption and the related mechanisms

YANG Wang JIANG Bo CHE Sai YAN Lu LI Zheng-xuan LI Yong-feng

杨旺, 蒋波, 车赛, 闫璐, 李正轩, 李永峰. 碳基电磁波吸收材料及其机理研究进展. 新型炭材料, 2021, 36(6): 1016-1033. doi: 10.1016/S1872-5805(21)60095-1
引用本文: 杨旺, 蒋波, 车赛, 闫璐, 李正轩, 李永峰. 碳基电磁波吸收材料及其机理研究进展. 新型炭材料, 2021, 36(6): 1016-1033. doi: 10.1016/S1872-5805(21)60095-1
YANG Wang, JIANG Bo, CHE Sai, YAN Lu, LI Zheng-xuan, LI Yong-feng. Research progress on carbon-based materials for electromagnetic wave absorption and the related mechanisms. New Carbon Mater., 2021, 36(6): 1016-1033. doi: 10.1016/S1872-5805(21)60095-1
Citation: YANG Wang, JIANG Bo, CHE Sai, YAN Lu, LI Zheng-xuan, LI Yong-feng. Research progress on carbon-based materials for electromagnetic wave absorption and the related mechanisms. New Carbon Mater., 2021, 36(6): 1016-1033. doi: 10.1016/S1872-5805(21)60095-1

碳基电磁波吸收材料及其机理研究进展

doi: 10.1016/S1872-5805(21)60095-1
基金项目: 国家自然科学基金(21908245,21776308),中国石油大学(北京)科学基金(2462018YJRC009)
详细信息
    通讯作者:

    李永峰,博士,教授. E-mail:yfli@cup.edu.cn

  • 中图分类号: TQ127.1+1

Research progress on carbon-based materials for electromagnetic wave absorption and the related mechanisms

More Information
    Author Bio:

    杨 旺,博士,副教授. E-mail:wyang@cup.edu.cn杨旺、蒋波为共同第一作者

    Corresponding author: LI Yong-feng, Professor. E-mail: yfli@cup.edu.cn
  • ‡ The first two authors contributed equally to this work
  • 摘要: 随着电子信息技术的发展,微波在军事和民用领域的应用越来越广泛。相应的电磁辐射污染成为全球关注的问题。为了合成厚度薄、密度低、吸收频带宽和吸收强度高的电磁波吸收材料,研究者们进行了大量的努力。碳基材料由于重量轻、衰减能力强、比表面积大和优异的物理化学稳定性,在电磁波吸收方面表现出巨大的潜力。本文首先介绍了吸波材料的衰减理论和影响吸波性能的因素。接下来,总结了不同维度的纯炭材料(如0维炭球、一维炭纳米管、二维炭片和三维多孔炭)以及由碳和磁性物质、陶瓷、金属硫化物、Mxene以及导电聚合物等异质成分组成的复合材料的研究现状。详细介绍了吸波剂的代表性合成方法、吸波性能以及衰减机理。最后,提出了对于未来挑战和发展前景的看法。
    ‡ The first two authors contributed equally to this work
  • FIG. 1032.  FIG. 1032.

    FIG. 1032.. 

    Figure  1.  Schematic diagram of various carbon-based EWA materials.

    Figure  2.  Schematic diagram of reflection, absorption and transmission of EWs.

    Figure  3.  Schematic illustration on (a) the fabrication and (b) absorption mechanism of hollow carbon microspheres (Reproduced with permission[32]. Copyright 2019, Elsevier), TEM images of (c1) solid carbon nanoparticles, (c2) HPCNs-1, (c3) HPCNs-2 and (c4) HPCNs-3, (d) conduction loss and (e) polarization loss of all HPCNs-m samples and (f) the RL and effective absorption bandwidth of HPCNs-3 (Reproduced with permission[37]. Copyright 2021, Elsevier).

    Figure  4.  (a) The absorption mechanisms of hybrids of F-SWCNTs and p-SWCNTs, (b) impedance matching and (c) attenuation constant of hybrids with different ratios (Reproduced with permission[43]. Copyright 2018, Royal Society of Chemistry), (d) the synthesis process, (e) SEM image, (f) 3D RL plot, and (g) absorption mechanism of thin flake graphite (Reproduced with permission[46]. Copyright 2019, Elsevier).

    Figure  5.  (a) Superior strength, (b) light weight and (c) absorption properties of N-doped graphene foams (Reproduced with permission[53]. Copyright 2019, Elsevier), (d) digital image and (e) SEM image of porous carbon derived from wheat fluor dough, (f) EMA performance under the condition of different fermentation time (Reproduced with permission[57]. Copyright 2020, Elsevier), (g) fabrication of hierarchical porous carbon and (h) its corresponding absorption performance (Reproduced with permission[62]. Copyright 2020, Elsevier).

    Figure  6.  (a) Preparation diagram, (b) SEM image, (c) TEM image, and (d) absorption curves of Ni@NPC (Reproduced with permission[7]. Copyright 2021, Elsevier), (e) synthesis procedure of the “3D carbon nanocoil-2D reduced graphene oxide-1D carbon nanofiber-0D metal oxide nanoparticles” hierarchical aerogel (RGO/CNC/CNF/M-NPs) (Reproduced with permission[66]. Copyright 2021, Springer Nature).

    Figure  7.  Microwave loss mechanisms of RGO/CNC/CNF/M-NP aerogel (Reproduced with permission[66]. Copyright 2021, Springer Nature).

    Figure  8.  (a) Outstanding EWA performance of ZnO@carbon composite (Reproduced with permission[10]. Copyright 2020, Elsevier), (b) lightweight and flexible C-SiC nanofiber with strong EWA (Reproduced with permission[71]. Copyright 2021, Elsevier), (c) absorption mechanisms of MoS2/HCS (Reproduced with permission[9]. Copyright 2020, American Chemical Society) and (d) preparation process, TEM image and absorption performance of ZnS@N-doped porous carbon nanoribbons (ZnS@ NPCNRs) (Reproduced with permission[76]. Copyright 2021, Elsevier).

    Figure  9.  (a-c) Schematic diagram of the preparation, morphology and absorption property of Ti3C2Tx MXene@graphene oxide hybride aerogel microspheres (Reproduced with permission[77]. Copyright 2020, Elsevier), (d) excellent properties of 3D hybrid foam (Reproduced with permission[83]. Copyright 2020, American Chemical Society) and (e) EWA, Self-cleaning, and thermal insulation of PCF aerogel (Reproduced with permission[84]. Copyright 2019, Wiley-VCH).

  • [1] Pan J, Guo H, Wang M, et al. Shape anisotropic Fe3O4 nanotubes for efficient microwave absorption[J]. Nano Research,2020,13(3):621-629. doi: 10.1007/s12274-020-2656-5
    [2] Shu J C, Huang X Y, Cao M S. Assembling 3D flower-like Co3O4-MWCNT architecture for optimizing low-frequency microwave absorption[J]. Carbon,2021,174:638-646. doi: 10.1016/j.carbon.2020.11.087
    [3] Gao S, Wang G S, Guo L, et al. Tunable and ultraefficient microwave absorption properties of trace N-doped two-dimensional carbon-based nanocomposites loaded with multi-rare earth oxides[J]. Small,2020,16(19):1906668. doi: 10.1002/smll.201906668
    [4] Li Q, Zhao Y, Li X, et al. MOF induces 2D GO to assemble into 3D accordion-like composites for tunable and optimized microwave absorption performance[J]. Small,2020,16(42):2003905. doi: 10.1002/smll.202003905
    [5] Wang S, Li D, Zhou Y, et al. Hierarchical Ti3C2Tx MXene/Ni Chain/ZnO array hybrid nanostructures on cotton Fabric for durable self-cleaning and enhanced microwave absorption[J]. ACS Nano,2020,14(7):8634-8645. doi: 10.1021/acsnano.0c03013
    [6] Hu K, Wang H, Zhang X, et al. Ultralight Ti3C2Tx MXene foam with superior microwave absorption performance[J]. Chemical Engineering Journal,2021,408:127283. doi: 10.1016/j.cej.2020.127283
    [7] Yang W, Jiang B, Liu Z, et al. Magnetic coupling engineered porous dielectric carbon within ultralow filler loading toward tunable and high-performance microwave absorption[J]. Journal of Materials Science & Technology,2021,70:214-223.
    [8] Xu J, Zhang X, Yuan H, et al. N-doped reduced graphene oxide aerogels containing pod-like N-doped carbon nanotubes and FeNi nanoparticles for electromagnetic wave absorption[J]. Carbon,2020,159:357-365. doi: 10.1016/j.carbon.2019.12.020
    [9] Ning M, Man Q, Tan G, et al. Ultrathin MoS2 nanosheets encapsulated in hollow carbon spheres: A case of a dielectric absorber with optimized impedance for efficient microwave absorption[J]. ACS Applied Materials & Interfaces,2020,12(18):20785-20796.
    [10] Yan L, Zhang M, Zhao S, et al. Wire-in-tube ZnO@carbon by molecular layer deposition: Accurately tunable electromagnetic parameters and remarkable microwave absorption[J]. Chemical Engineering Journal,2020,382:122860. doi: 10.1016/j.cej.2019.122860
    [11] Cui Y, Wu F, Wang J, et al. Three dimensional porous MXene/CNTs microspheres: Preparation, characterization and microwave absorbing properties[J]. Composites Part A: Applied Science and Manufacturing,2021,145:106378. doi: 10.1016/j.compositesa.2021.106378
    [12] Deng B, Wang L, Xiang Z, et al. Rational construction of MXene/Ferrite@C hybrids with improved impedance matching for high-performance electromagnetic absorption applications[J]. Materials Letters,2021,284:129029. doi: 10.1016/j.matlet.2020.129029
    [13] Guo T, Huang B, Li C, et al. Magnetic sputtering of FeNi/C bilayer film on SiC fibers for effective microwave absorption in the low-frequency region[J]. Ceramics International,2021,47(4):5221-5226. doi: 10.1016/j.ceramint.2020.10.101
    [14] Zhu T, Shen W, Wang X, et al. Paramagnetic CoS2@MoS2 core-shell composites coated by reduced graphene oxide as broadband and tunable high-performance microwave absorbers[J]. Chemical Engineering Journal,2019,378:122159. doi: 10.1016/j.cej.2019.122159
    [15] Yang H, Shen Z, Peng H, et al. 1D-3D mixed-dimensional MnO2@nanoporous carbon composites derived from Mn-metal organic framework with full-band ultra-strong microwave absorption response[J]. Chemical Engineering Journal,2020:128087.
    [16] Sun X, Yang M, Yang S, et al. Ultrabroad band microwave absorption of carbonized waxberry with hierarchical structure[J]. Small,2019,15(43):1902974. doi: 10.1002/smll.201902974
    [17] Feng J, Zong Y, Sun Y, et al. Optimization of porous FeNi3/N-GN composites with superior microwave absorption performance[J]. Chemical Engineering Journal,2018,345:441-451. doi: 10.1016/j.cej.2018.04.006
    [18] Wang J, Liu L, Jiao S, et al. Hierarchical carbon fiber@MXene@MoS2 core-sheath synergistic microstructure for tunable and efficient microwave absorption[J]. Advanced Functional Materials,2020,30(45):2002595. doi: 10.1002/adfm.202002595
    [19] Wang L, Jia X, Li Y, et al. Synthesis and microwave absorption property of flexible magnetic film based on graphene oxide/carbon nanotubes and Fe3O4 nanoparticles[J]. Journal of Materials Chemistry A,2014,2(36):14940-14946. doi: 10.1039/C4TA02815E
    [20] Wang X, Pan F, Xiang Z, et al. Magnetic vortex core-shell Fe3O4@C nanorings with enhanced microwave absorption performance[J]. Carbon,2020,157:130-139. doi: 10.1016/j.carbon.2019.10.030
    [21] Aharoni A. Exchange resonance modes in a ferromagnetic sphere[J]. Journal of applied physics,1991,69(11):7762-7764. doi: 10.1063/1.347502
    [22] Liu X G, Ou Z Q, Geng D Y, et al. Influence of a graphite shell on the thermal and electromagnetic characteristics of FeNi nanoparticles[J]. Carbon,2010,48(3):891-897. doi: 10.1016/j.carbon.2009.11.011
    [23] Xing L, Li X, Wu Z, et al. 3D hierarchical local heterojunction of MoS2/FeS2 for enhanced microwave absorption[J]. Chemical Engineering Journal,2020,379:122241. doi: 10.1016/j.cej.2019.122241
    [24] Zhang D, Xiong Y, Cheng J, et al. Synergetic dielectric loss and magnetic loss towards superior microwave absorption through hybridization of few-layer WS2 nanosheets with NiO nanoparticles[J]. Science Bulletin,2020,65(2):138-146. doi: 10.1016/j.scib.2019.10.011
    [25] Zhao B, Guo X, Zhao W, et al. Facile synthesis of yolk–shell Ni@void@SnO2 (Ni3Sn2) ternary composites via galvanic replacement/Kirkendall effect and their enhanced microwave absorption properties[J]. Nano Research,2017,10(1):331-343. doi: 10.1007/s12274-016-1295-3
    [26] Qiu J, Shen H, Gu M. Microwave absorption of nanosized barium ferrite particles prepared using high-energy ball milling[J]. Powder Technology,2005,154(2-3):116-119. doi: 10.1016/j.powtec.2005.05.003
    [27] Wu N, Liu X, Zhao C, et al. Effects of particle size on the magnetic and microwave absorption properties of carbon-coated nickel nanocapsules[J]. Journal of Alloys and Compounds,2016,656:628-634. doi: 10.1016/j.jallcom.2015.10.027
    [28] Iida H, Takayanagi K, Nakanishi T, et al. Synthesis of Fe3O4 nanoparticles with various sizes and magnetic properties by controlled hydrolysis[J]. Journal of Colloid and Interface Science,2007,314(1):274-280. doi: 10.1016/j.jcis.2007.05.047
    [29] Lü Y, Wang Y, Li H, et al. MOF-derived porous Co/C nanocomposites with excellent electromagnetic wave absorption properties[J]. ACS Applied Materials & Interfaces,2015,7(24):13604-13611.
    [30] He M, Zhou Y, Huang T, et al. Flower-like CoS hierarchitectures@polyaniline organic-inorganic heterostructured composites: Preparation and enhanced microwave absorption performance[J]. Composites Science and Technology,2020,200:108403. doi: 10.1016/j.compscitech.2020.108403
    [31] Lei L, Yao Z, Zhou J, et al. Hydrangea-like Ni/NiO/C composites derived from metal-organic frameworks with superior microwave absorption[J]. Carbon,2021,173:69-79. doi: 10.1016/j.carbon.2020.10.093
    [32] Zhang H, Wang B, Feng A, et al. Mesoporous carbon hollow microspheres with tunable pore size and shell thickness as efficient electromagnetic wave absorbers[J]. Composites Part B: Engineering,2019,167:690-699. doi: 10.1016/j.compositesb.2019.03.055
    [33] Chen J, Liang X, Liu W, et al. Mesoporous carbon hollow spheres as a light weight microwave absorbing material showing modulating dielectric loss[J]. Dalton Transactions,2019,48(27):10145-10150. doi: 10.1039/C9DT01876J
    [34] Xu H, Yin X, Li M, et al. Mesoporous carbon hollow microspheres with red blood cell like morphology for efficient microwave absorption at elevated temperature[J]. Carbon,2018,132:343-351. doi: 10.1016/j.carbon.2018.02.040
    [35] Cheng Y, Li Z, Li Y, et al. Rationally regulating complex dielectric parameters of mesoporous carbon hollow spheres to carry out efficient microwave absorption[J]. Carbon,2018,127:643-652. doi: 10.1016/j.carbon.2017.11.055
    [36] Zhang H, Jia Z, Feng A, et al. Enhanced microwave absorption performance of sulfur-doped hollow carbon microspheres with mesoporous shell as a broadband absorber[J]. Composites Communications,2020,19:42-50. doi: 10.1016/j.coco.2020.02.010
    [37] Tao J, Zhou J, Yao Z, et al. Multi-shell hollow porous carbon nanoparticles with excellent microwave absorption properties[J]. Carbon,2021,172:542-555. doi: 10.1016/j.carbon.2020.10.062
    [38] Xu H, Yin X, Zhu M, et al. Constructing hollow graphene nano-spheres confined in porous amorphous carbon particles for achieving full X band microwave absorption[J]. Carbon,2019,142:346-353. doi: 10.1016/j.carbon.2018.10.056
    [39] Wang Z, Zhao G L. Microwave absorption properties of carbon nanotubes-epoxy composites in a frequency range of 2-20 GHz[J]. Open Journal of Composite Materials,2013,3(2):17-23. doi: 10.4236/ojcm.2013.32003
    [40] Nwigboji I H, Ejembi J I, Wang Z, et al. Microwave absorption properties of multi-walled carbon nanotube (outer diameter 20-30 nm)-epoxy composites from 1 to 26.5 GHz[J]. Diamond and Related Materials,2015,52:66-71. doi: 10.1016/j.diamond.2014.12.008
    [41] Che B D, Nguyen B Q, Nguyen L T T, et al. The impact of different multi-walled carbon nanotubes on the X-band microwave absorption of their epoxy nanocomposites[J]. Chemistry Central Journal,2015,9(1):1-13. doi: 10.1186/s13065-014-0076-x
    [42] Sun H, Che R, You X, et al. Cross‐stacking aligned carbon‐nanotube films to tune microwave absorption frequencies and increase absorption intensities[J]. Advanced Materials,2014,26(48):8120-8125. doi: 10.1002/adma.201403735
    [43] Liu Y, Zhang Y, Zhang C, et al. Aligned fluorinated single-walled carbon nanotubes as a transmission channel towards attenuation of broadband electromagnetic waves[J]. Journal of Materials Chemistry C,2018,6(35):9399-9409. doi: 10.1039/C8TC02522C
    [44] Liu Y, Zhang Y, Wang X, et al. Excellent microwave absorbing property of multiwalled carbon nanotubes with skin-core heterostructure formed by outer dominated fluorination[J]. The Journal of Physical Chemistry C,2018,122(11):6357-6367. doi: 10.1021/acs.jpcc.7b10819
    [45] Quan B, Liu W, Liu Y, et al. Quasi-noble-metal graphene quantum dots deposited stannic oxide with oxygen vacancies: synthesis and enhanced photocatalytic properties[J]. Journal of Colloid and Interface Science,2016,481:13-19. doi: 10.1016/j.jcis.2016.07.037
    [46] Duan Y, Li Y, Wang D, et al. Transverse size effect on electromagnetic wave absorption performance of exfoliated thin-layered flake graphite[J]. Carbon,2019,153:682-690. doi: 10.1016/j.carbon.2019.07.078
    [47] Song W L, Cao M S, Lu M M, et al. Improved dielectric properties and highly efficient and broadened bandwidth electromagnetic attenuation of thickness-decreased carbon nanosheet/wax composites[J]. Journal of Materials Chemistry C,2013,1(9):1846-1854. doi: 10.1039/c2tc00494a
    [48] Quan L, Qin F X, Estevez D, et al. The role of graphene oxide precursor morphology in magnetic and microwave absorption properties of nitrogen-doped graphene[J]. Journal of Physics D: Applied Physics,2019,52(30):305001. doi: 10.1088/1361-6463/ab1dac
    [49] Li Q, Tian X, Yang W, et al. Fabrication of porous graphene-like carbon nanosheets with rich doped-nitrogen for high-performance electromagnetic microwave absorption[J]. Applied Surface Science,2020,530:147298. doi: 10.1016/j.apsusc.2020.147298
    [50] Zhou Y, Wang N, Muhammad J, et al. Graphene nanoflakes with optimized nitrogen doping fabricated by arc discharge as highly efficient absorbers toward microwave absorption[J]. Carbon,2019,148:204-213. doi: 10.1016/j.carbon.2019.03.034
    [51] Zhang Y, Huang Y, Zhang T, et al. Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam[J]. Advanced Materials,2015,27(12):2049-2053. doi: 10.1002/adma.201405788
    [52] Egami Y, Yamamoto T, Suzuki K, et al. Stacked polypyrrole-coated non-woven fabric sheets for absorbing electromagnetic waves with extremely high frequencies[J]. Journal of Materials Science,2012,47(1):382-390. doi: 10.1007/s10853-011-5809-9
    [53] Liu P, Zhang Y, Yan J, et al. Synthesis of lightweight N-doped graphene foams with open reticular structure for high-efficiency electromagnetic wave absorption[J]. Chemical Engineering Journal,2019,368:285-298. doi: 10.1016/j.cej.2019.02.193
    [54] Zhou J, Chen Y, Li H, et al. Facile synthesis of three-dimensional lightweight nitrogen-doped graphene aerogel with excellent electromagnetic wave absorption properties[J]. Journal of Materials Science,2018,53(6):4067-4077. doi: 10.1007/s10853-017-1838-3
    [55] Zhang M, Zhang J, Lv X, et al. How to exhibit the efficient electromagnetic wave absorbing performance of RGO aerogels: less might be better[J]. Journal of Materials Science: Materials in Electronics,2018,29(7):5496-5500. doi: 10.1007/s10854-018-8517-2
    [56] Zhao H, Cheng Y, Zhang Z, et al. Biomass-derived graphene-like porous carbon nanosheets towards ultralight microwave absorption and excellent thermal infrared properties[J]. Carbon,2021,173:501-511. doi: 10.1016/j.carbon.2020.11.035
    [57] Zhao H, Seow J Z Y, Cheng Y, et al. Green synthesis of hierarchically porous carbons with tunable dielectric response for microwave absorption[J]. Ceramics International,2020,46(10):15447-15455. doi: 10.1016/j.ceramint.2020.03.089
    [58] Wu Z, Tian K, Huang T, et al. Hierarchically porous carbons derived from biomasses with excellent microwave absorption performance[J]. ACS Applied Materials & Interfaces,2018,10(13):11108-11115.
    [59] Qiu X, Wang L, Zhu H, et al. Lightweight and efficient microwave absorbing materials based on walnut shell-derived nano-porous carbon[J]. Nanoscale,2017,9(22):7408-7418. doi: 10.1039/C7NR02628E
    [60] Zhang Z, Zhao H, Gu W, et al. A biomass derived porous carbon for broadband and lightweight microwave absorption[J]. Scientific Reports,2019,9(1):1-10.
    [61] Bai T, Guo Y, Liu H, et al. Achieving enhanced electromagnetic shielding and absorption capacity of cellulose-derived carbon aerogels via tuning the carbonization temperature[J]. Journal of Materials Chemistry C,2020,8(15):5191-5201. doi: 10.1039/D0TC00448K
    [62] Yang W, Li R, Jiang B, et al. Production of hierarchical porous carbon nanosheets from cheap petroleum asphalt toward lightweight and high-performance electromagnetic wave absorbents[J]. Carbon,2020,166:218-226. doi: 10.1016/j.carbon.2020.05.043
    [63] Liu Z, Duan Y, Deng B, et al. Synthesis of ultralight N-rich porous graphene nanosheets derived from fluid catalytic cracking slurry and their electromagnetic wave absorption properties[J]. Industrial & Engineering Chemistry Research,2020,59(17):8243-8251.
    [64] Xu X, Wang G, Wan G, et al. Magnetic Ni/graphene connected with conductive carbon nano-onions or nanotubes by atomic layer deposition for lightweight and low-frequency microwave absorption[J]. Chemical Engineering Journal,2020,382:122980. doi: 10.1016/j.cej.2019.122980
    [65] Kuang D, Wang S, Hou L, et al. A comparative study on the dielectric response and microwave absorption performance of FeNi-capped carbon nanotubes and FeNi-cored carbon nanoparticles[J]. Nanotechnology,2020,32(10):105701.
    [66] Zhao Y, Zuo X, Guo Y, et al. Structural engineering of hierarchical aerogels comprised of multi-dimensional gradient carbon nanoarchitectures for highly efficient microwave absorption[J]. Nano-Micro Letters,2021,13(1):1-20. doi: 10.1007/s40820-020-00525-y
    [67] Wang X, Liao J, Du R, et al. Achieving super-broad effective absorption bandwidth with low filler loading for graphene aerogels/raspberry-like CoFe2O4 clusters by N doping[J]. Journal of Colloid and Interface Science,2021,590:186-198. doi: 10.1016/j.jcis.2021.01.069
    [68] Bao S, Hou T, Tan Q, et al. Immobilization of zinc oxide nanoparticles on graphene sheets for lithium ion storage and electromagnetic microwave absorption[J]. Materials Chemistry and Physics,2020,245:122766. doi: 10.1016/j.matchemphys.2020.122766
    [69] Ye X, Chen Z, Li M, et al. Microstructure and microwave absorption performance variation of SiC/C foam at different elevated-temperature heat treatment[J]. ACS Sustainable Chemistry & Engineering,2019,7(22):18395-18404.
    [70] Li B, Mao B, Wang X, et al. Novel, hierarchical SiC nanowire-reinforced SiC/carbon foam composites: Lightweight, ultrathin, and highly efficient microwave absorbers[J]. Journal of Alloys and Compounds,2020,829:154609. doi: 10.1016/j.jallcom.2020.154609
    [71] Zhao Y, Zhang Y, Yang C, et al. Ultralight and flexible SiC nanoparticle-decorated carbon nanofiber mats for broad-band microwave absorption[J]. Carbon,2021,171:474-483. doi: 10.1016/j.carbon.2020.09.040
    [72] Ning M, Jiang P, Ding W, et al. Phase manipulating toward molybdenum disulfide for optimizing electromagnetic wave absorbing in gigahertz[J]. Advanced Functional Materials,2021:2011229.
    [73] Liu Z, Pan F, Deng B, et al. Self-assembled MoS2/3D worm-like expanded graphite hybrids for high-efficiency microwave absorption[J]. Carbon,2021,174:59-69. doi: 10.1016/j.carbon.2020.12.019
    [74] Zhang D, Liu T, Cheng J, et al. Lightweight and high-performance microwave absorber based on 2D WS2-RGO heterostructures[J]. Nano-Micro Letters,2019,11(1):38. doi: 10.1007/s40820-019-0270-4
    [75] Liu P, Zhu C, Gao S, et al. N-doped porous carbon nanoplates embedded with CoS2 vertically anchored on carbon cloths for flexible and ultrahigh microwave absorption[J]. Carbon,2020,163:348-359. doi: 10.1016/j.carbon.2020.03.041
    [76] Wang J, Wu F, Cui Y, et al. Efficient synthesis of N-doped porous carbon nanoribbon composites with selective microwave absorption performance in common wavebands[J]. Carbon,2021,175:164-175. doi: 10.1016/j.carbon.2021.01.005
    [77] Li Y, Meng F, Mei Y, et al. Electrospun generation of Ti3C2Tx MXene@graphene oxide hybrid aerogel microspheres for tunable high-performance microwave absorption[J]. Chemical Engineering Journal,2020,391:123512. doi: 10.1016/j.cej.2019.123512
    [78] Li X, Yu L, Zhao W, et al. Prism-shaped hollow carbon decorated with polyaniline for microwave absorption[J]. Chemical Engineering Journal,2020,379:122393. doi: 10.1016/j.cej.2019.122393
    [79] Ge J, Liu S, Liu L, et al. Optimizing the electromagnetic wave absorption performance of designed hollow CoFe2O4/CoFe@C microspheres[J]. Journal of Materials Science & Technology,2021,81:190-202.
    [80] Wang Y, Gao X, Zhang W, et al. Synthesis of hierarchical CuS/RGO/PANI/Fe3O4 quaternary composite and enhanced microwave absorption performance[J]. Journal of Alloys and Compounds,2018,757:372-381. doi: 10.1016/j.jallcom.2018.05.080
    [81] Cui Y, Yang K, Wang J, et al. Preparation of pleated RGO/MXene/Fe3O4 microsphere and its absorption properties for electromagnetic wave[J]. Carbon,2021,172:1-14. doi: 10.1016/j.carbon.2020.09.093
    [82] Sun Y, Wang Y, Ma H, et al. Fe3C nanocrystals encapsulated in N-doped carbon nanofibers as high-efficient microwave absorbers with superior oxidation/corrosion resistance[J]. Carbon,2021,178:515-527. doi: 10.1016/j.carbon.2021.03.032
    [83] Gu W, Tan J, Chen J, et al. Multifunctional bulk hybrid foam for infrared stealth, thermal insulation, and microwave absorption[J]. ACS Applied Materials & Interfaces,2020,12(25):28727-28737.
    [84] Li Y, Liu X, Nie X, et al. Multifunctional organic-inorganic hybrid aerogel for self‐cleaning, heat‐insulating, and highly efficient microwave absorbing material[J]. Advanced Functional Materials,2019,29(10):1807624. doi: 10.1002/adfm.201807624
    [85] Liang L, Li Q, Yan X, et al. Multifunctional magnetic Ti3C2Tx MXene/graphene aerogel with superior electromagnetic wave absorption Performance[J]. ACS Nano,2021,15(4):6622-6632. doi: 10.1021/acsnano.0c09982
  • 加载中
图(10)
计量
  • 文章访问数:  1874
  • HTML全文浏览量:  1072
  • PDF下载量:  281
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-09
  • 修回日期:  2021-08-22
  • 网络出版日期:  2021-11-12
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回