留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The formation of uniform graphene-polyaniline hybrids using a completely miscible cosolvent that have an excellent electrochemical performance

LIU Mei-li LONG Xiang TANG Hai-yan FAN Xin-hang CHEN Chao-yi SHAO Jiao-jing

刘美丽, 龙翔, 汤海燕, 范新航, 陈朝轶, 邵姣婧. 无限互溶共溶剂制备高电化学性能石墨烯/聚苯胺均相复合材料. 新型炭材料(中英文), 2022, 37(2): 381-391. doi: 10.1016/S1872-5805(21)60099-9
引用本文: 刘美丽, 龙翔, 汤海燕, 范新航, 陈朝轶, 邵姣婧. 无限互溶共溶剂制备高电化学性能石墨烯/聚苯胺均相复合材料. 新型炭材料(中英文), 2022, 37(2): 381-391. doi: 10.1016/S1872-5805(21)60099-9
LIU Mei-li, LONG Xiang, TANG Hai-yan, FAN Xin-hang, CHEN Chao-yi, SHAO Jiao-jing. The formation of uniform graphene-polyaniline hybrids using a completely miscible cosolvent that have an excellent electrochemical performance. New Carbon Mater., 2022, 37(2): 381-391. doi: 10.1016/S1872-5805(21)60099-9
Citation: LIU Mei-li, LONG Xiang, TANG Hai-yan, FAN Xin-hang, CHEN Chao-yi, SHAO Jiao-jing. The formation of uniform graphene-polyaniline hybrids using a completely miscible cosolvent that have an excellent electrochemical performance. New Carbon Mater., 2022, 37(2): 381-391. doi: 10.1016/S1872-5805(21)60099-9

无限互溶共溶剂制备高电化学性能石墨烯/聚苯胺均相复合材料

doi: 10.1016/S1872-5805(21)60099-9
基金项目: 国家自然科学基金(21564002,51972070和 52062004); 贵州省自然科学基金重点项目([2020]1Z042); 贵州大学培育项目(GDPY[2019]01);贵州省科技支撑项目(QKHZC[2021]YB317);霍英东教育基金(151109);贵州省研究生创新基金(YJSCXJH[2018]045, YJSCXJH[2020]028);全国大学生创新创业培训计划([2017]003)
详细信息
    通讯作者:

    邵姣婧,教授. E-mail:shaojiao_jing@163.com

  • 中图分类号: TB332;TM53

The formation of uniform graphene-polyaniline hybrids using a completely miscible cosolvent that have an excellent electrochemical performance

More Information
    Author Bio:

    刘美丽,龙翔为共同第一作者

    Corresponding author: SHAO Jiao-jing, Professor. E-mail: shaojiao_jing@163.com
  • 摘要: 石墨烯/聚苯胺复合材料的电化学性能很大程度上由其微观结构形貌和聚苯胺在石墨烯片层上的分布情况决定。在制备该复合材料时,两者的均相分布对于解决石墨烯片层的堆叠以及聚苯胺纳米结构的团聚至关重要。常见的聚苯胺/石墨烯均相复合材料制备方法,如逐层自组装或电化学原位聚合等,流程复杂、难以实现大规模生产。本文采用N, N-二甲基甲酰胺和水组成的互溶共溶剂成功地实现了石墨烯和聚苯胺的均相复合,通过共溶剂这一方式解决了上述所面临的问题。使用共溶剂的复合纤维展现出均相分布的微观结构,且聚苯胺均匀分布在石墨烯片层上,而相对比于只用水作为溶剂制备的复合纤维并未展现出均相复合的微观结构,使用共溶剂得到的复合纤维显示出优异的电化学性能。更重要的是通过共溶剂这一简单有效的策略,有望实现大规模生产两种成分均相分布且性能优异的石墨烯/聚苯胺复合材料。
  • FIG. 1402.  FIG. 1402.

    FIG. 1402.. 

    Figure  1.  Photos of (a) GO suspensions, (b) PANI suspensions, (c) GO/PANI gel in a H2O/DMF cosolvent, and (d) the as-spun flexible GN/PANI composite fiber. (e) Raman spectra and (f) XRD patterns of PANI, pure GN fiber, and GN/PANI-CS fiber. (g) SEM image of GN/PANI-CS fiber showing the uniform diameter of the fiber. (h) Higher magnification SEM image and (i) TEM image of GN/PANI-CS fiber, further exhibiting the uniformly distributed PANI nanoneedles.

    Figure  2.  SEM images of as-prepared PANI dispersed by (a-c) H2O, (d-f) DMF, and (g-i) H2O/DMF cosolvent, followed by drying at 60 ºC.

    Figure  3.  (a) Stress-strain curves of pure GN fiber, GN/PANI-H2O, and GN/PANI-CS. (b) UV-vis spectra of PANI dispersed in H2O (black), DMF (red), and H2O/DMF cosolvent (blue). (c) CV curves at 5 mV s−1, (d) GCD profiles at 0.2 A g−1, (e) Nyquist plots and (f) Bode plots of GN/PANI-CS fiber supercapacitors with different mass ratios of GO to PANI.

    Figure  4.  (a) CV curves at 5 mV s−1, (b) GCD curves at 0.2 A g−1, (c) rate performance, (d) Nyquist plots, and (e) Bode plots of GN/PANI-H2O and GN/PANI-CS. (f) CV curves at different scan rates. (g) GCD profiles at various current densities of GN/PANI-CS. (h) Ragone plot of this work and other previously-reported literatures. (i) Cyclic performance at 1 A g−1 of GN/PANI-CS.

    Figure  5.  (a) Cartoons of devices of a single, two and three graphene/PANI-CS fiber supercapacitors connected in series or in parallel. (b) CV curves of a single, two, and three GN/PANI-CS fiber-based devices connected in parallel or in series at 2 mV s−1. (c) The GCD curves of single, two and three GN/PANI-CS fiber supercapacitors connected in parallel or in series at 0.1 A g−1. (d) Optical photo of a LED with a rated voltage of 1.5 V powered by a tandem device assembled by four fiber supercapacitors in series. (e) Cartoons of the fiber supercapacitor under bending conditions. (f) GCD profiles of a fiber supercapacitor at different bending angles.

  • [1] Zhang S, Pan N. Supercapacitors performance evaluation[J]. Advanced Energy Materials,2015,5(6):1401401. doi: 10.1002/aenm.201401401
    [2] WANG Shuai, GUO Yu-zhe, WANG Fang-xiao, et al. Research progress on metal and covalent organic framework-based materials for high-performance supercapacitors[J]. New Carbon Materials,2022,37(1):109-135.
    [3] Tang X N, Zhu S K, Ning J, et al. Charge storage mechanisms of manganese dioxide-based supercapacitors: A review[J]. New Carbon Materials,2021,36(4):702-710. doi: 10.1016/S1872-5805(21)60082-3
    [4] Cheng L, Li X J, Li J, et al. Construction of three-dimensional all-carbon C60/graphene hybrids and their use as electrodes for high performance supercapacitors[J]. New Carbon Materials,2020,35(6):684-695. doi: 10.1016/S1872-5805(20)60522-4
    [5] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306(5696):666-669. doi: 10.1126/science.1102896
    [6] Castro Neto A H, Guinea F, Peres N M R, et al. The electronic properties of graphene[J]. Reviews of Modern Physics,2009,81(1):109-162. doi: 10.1103/RevModPhys.81.109
    [7] Lee C, Wei X D, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science,2008,321(5887):385-388. doi: 10.1126/science.1157996
    [8] Qu G, Cheng J, Li X, et al. A fiber supercapacitor with high energy density based on hollow graphene/conducting polymer fiber electrode[J]. Advanced Materials,2016,28(19):3605-3605. doi: 10.1002/adma.201670128
    [9] Zhu Z H, Xiong W, Hu X, et al. Flexible fiber-shaped supercapacitor utilizing hierarchical NiCo2O4@Polypyrrole core-shell nanowires on hemp-derived carbon[J]. Journal of Materials Chemistry A,2015,3(33):17209-17216. doi: 10.1039/C5TA04201A
    [10] Chen Q, Meng Y, Hu C, et al. MnO2 -modified hierarchical graphene fiber electrochemical supercapacitor[J]. Journal of Power Sources,2014,247(3):32-39.
    [11] Zhai S, Wang C, Karahan H E, et al. Nano-RuO2-decorated holey graphene composite fibers for nicro-supercapacitors with ultrahigh energy dnsity[J]. Small,2018,14(29):1800582. doi: 10.1002/smll.201800582
    [12] Zhu Y L, Wang Y X, Gao C, et al. CoMoO4-N-doped carbon hybrid nanoparticles loaded on a petroleum asphalt-based porous carbon for lithium storage[J]. New Carbon Materials,2020,35(4):358-370. doi: 10.1016/S1872-5805(20)60494-2
    [13] Gao F, Qin S H, Zang Y H, et al. Highly efficient formation of Mn3O4-graphene oxide hybrid aerogels for use as the cathode material of high performance lithium ion batteries[J]. New Carbon Materials,2020,35(2):121-130. doi: 10.1016/S1872-5805(20)60479-6
    [14] Pandolfo A G, Hollenkamp A F. Carbon properties and their role in supercapacitors[J]. Journal of Power Sources,2006,157(1):11-27. doi: 10.1016/j.jpowsour.2006.02.065
    [15] Wang Y, Shi Z, Huang Y, et al. Supercapacitor devices based on graphene materials[J]. The Journal of Physical Chemistry C,2009,113(30):13103-13107. doi: 10.1021/jp902214f
    [16] Liu C, Yu Z, Neff D, et al. Graphene-based supercapacitor with an ultrahigh energy Ddensity[J]. Nano Letters,2010,10(12):4863-4868. doi: 10.1021/nl102661q
    [17] Wei F, Zhang H F, He X J, et al. Synthesis of porous carbons from coal tar pitch for high-performance supercapacitors[J]. New Carbon Materials,2019,34(2):132-139. doi: 10.1016/S1872-5805(19)60006-5
    [18] Gao F, Zang Y H, Wang Y, et al. A review of the synthesis of carbon materials for energy storage from biomass and coal/heavy oil waste[J]. New Carbon Materials,2021,36(1):34-48. doi: 10.1016/S1872-5805(21)60003-3
    [19] Peng C, Hu D, Chen G Z. Theoretical specific capacitance based on charge storage mechanisms of conducting polymers: Comment on ‘Vertically oriented arrays of polyaniline nanorods and their super electrochemical properties’[J]. Chemical Communications,2011,47(14):4105-4107. doi: 10.1039/c1cc10675a
    [20] Huang J, Virji S, Weiller B H, et al. Polyaniline nanofibers: Facile synthesis and chemical sensors[J]. Journal of the American Chemical Society,2003,125(2):314-315. doi: 10.1021/ja028371y
    [21] Kim J, Cote L J, Kim F, et al. Graphene oxide sheets at interfaces[J]. Journal of the American Chemical Society,2010,132(23):8180-8186. doi: 10.1021/ja102777p
    [22] Shao J J, Lv W, Guo Q, et al. Hybridization of graphene oxide and carbon nanotubes at the liquid/air interface[J]. Chemical Communications,2012,48(31):3706-3708. doi: 10.1039/C1CC16838J
    [23] Cote L J, Cruz-Silva R, Huang J. Flash reduction and patterning of graphite oxide and its polymer composite[J]. Journal of the American Chemical Society,2009,131(31):11027-11032. doi: 10.1021/ja902348k
    [24] Chen C M, Huang J Q, Zhang Q, et al. Annealing a graphene oxide film to produce a free standing high conductive graphene film[J]. Carbon,2012,50(2):659-667. doi: 10.1016/j.carbon.2011.09.022
    [25] Pei S, Zhao J, Du J, et al. Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids[J]. Carbon,2010,48(15):4466-4474. doi: 10.1016/j.carbon.2010.08.006
    [26] Shao J J, Lv W, Yang Q H. Self-assembly of graphene oxide at interfaces[J]. Advanced Materials,2014,26(32):5586-5612. doi: 10.1002/adma.201400267
    [27] Chen C, Yang Q H, Yang Y, et al. Self-assembled free-standing graphite oxide membrane[J]. Advanced Materials,2009,21(29):3007-3011. doi: 10.1002/adma.200803726
    [28] Wu D Y, Zhou W H, He L Y, et al. Micro-corrugated graphene sheet enabled high-performance all-solid-state film supercapacitor[J]. Carbon,2020,160:156-163. doi: 10.1016/j.carbon.2020.01.019
    [29] Xu Z, Zheng B, Chen J, et al. Highly efficient synthesis of neat graphene nanoscrolls from graphene oxide by well-controlled lyophilization[J]. Chemistry of Materials,2014,26(23):6811-6818. doi: 10.1021/cm503418h
    [30] Xu Z, Gao C. Graphene chiral liquid crystals and macroscopic assembled fibres[J]. Nature Communications,2011,2(1):571. doi: 10.1038/ncomms1583
    [31] Sarker A K, Hong J D. Layer-by-layer self-assembled multilayer films composed of graphene/polyaniline bilayers: High-energy electrode materials for supercapacitors[J]. Langmuir,2012,28(34):12637-12646. doi: 10.1021/la3021589
    [32] Zhou S, Zhang H, Zhao Q, et al. Graphene-wrapped polyaniline nanofibers as electrode materials for organic supercapacitors[J]. Carbon,2013,52:440-450. doi: 10.1016/j.carbon.2012.09.055
    [33] Feng X M, Li R M, Ma Y W, et al. One-step electrochemical synthesis of graphene/polyaniline composite film and its applications[J]. Advanced Functional Materials,2011,21(15):2989-2996. doi: 10.1002/adfm.201100038
    [34] Zhang Q, Li Y, Feng Y, et al. Electropolymerization of graphene oxide/polyaniline composite for high-performance supercapacitor[J]. Electrochimica Acta,2013,90:95-100. doi: 10.1016/j.electacta.2012.11.035
    [35] Kim F, Luo J, Cruz-Silva R, et al. Self-propagating domino-like reactions in oxidized graphite[J]. Advanced Functional Materials,2010,20(17):2867-2873. doi: 10.1002/adfm.201000736
    [36] Chen X, Xiang T, Li Z, et al. A planar graphene-based film supercapacitor formed by liquid-air interfacial assembly[J]. Advanced Materials Interfaces,2017,4(9):1601127. doi: 10.1002/admi.201601127
    [37] Huang J, Kaner R B. A general chemical route to polyaniline nanofibers[J]. Journal of the American Chemical Society,2004,126(3):851-855. doi: 10.1021/ja0371754
    [38] Xu Z, Sun H, Zhao X, et al. Ultrastrong fibers assembled from giant graphene oxide sheets[J]. Advanced Materials,2013,25(2):188-193. doi: 10.1002/adma.201203448
    [39] Zhang X, Zhang J, Wang R, et al. Cationic surfactant directed polyaniline/CNT nanocables: Synthesis, characterization, and enhanced electrical properties[J]. Carbon,2004,42(8):1455-1461.
    [40] Nobrega M M, Ceppatelli M, Temperini M L A, et al. Pressure-induced reactivity in the emeraldine salt and base forms of polyaniline probed by FTIR and Raman[J]. The Journal of Physical Chemistry C,2014,118(47):27559-27566. doi: 10.1021/jp509154j
    [41] Potphode D D, Sivaraman P, Mishra S P, et al. Polyaniline/partially exfoliated multi-walled carbon nanotubes based nanocomposites for supercapacitors[J]. Electrochimica Acta,2015,155:402-410. doi: 10.1016/j.electacta.2014.12.126
    [42] Morávková Z, Trchová M, Dybal J, et al. The interaction of thin polyaniline films with various H-phosphonates: Spectroscopy and quantum chemical calculations[J]. Journal of Applied Polymer Science,2018,135(38):46728. doi: 10.1002/app.46728
    [43] Casado J, Hernández V, López Navarrete J T. Vibrational Raman shifts and aromaticity: The case of oligothiophenes[J]. The Chemical Record,2015,15(6):1110-1118. doi: 10.1002/tcr.201500025
    [44] Gao H, Ji B, Jäger I L, et al. Materials become insensitive to flaws at nanoscale: Lessons from nature[J]. Proceedings of the National Academy of Sciences,2003,100(10):5597. doi: 10.1073/pnas.0631609100
    [45] Huang Y F, Lin C W. Facile synthesis and morphology control of graphene oxide/polyaniline nanocomposites via in-situ polymerization process[J]. Polymer,2012,53(13):2574-2582. doi: 10.1016/j.polymer.2012.04.022
    [46] Yue J, Wang Z H, Cromack K R, et al. Effect of sulfonic acid group on polyaniline backbone[J]. Journal of the American Chemical Society,1991,113(7):2665-2671. doi: 10.1021/ja00007a046
    [47] Xu J, Wang K, Zu S, et al. Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage[J]. ACS Nano,2010,4(9):5019-5026. doi: 10.1021/nn1006539
    [48] Yang N, Zhai J, Wan M, et al. Layered nanostructures of polyaniline with graphene oxide as the dopant and template[J]. Synthetic Metals,2010,160(15):1617-1622.
    [49] Xia H, Narayanan J, Cheng D, et al. Formation of ordered arrays of oriented polyaniline nanoparticle nanorods[J]. The Journal of Physical Chemistry B,2005,109(26):12677-12684. doi: 10.1021/jp0503260
    [50] Li D, Li Y, Feng Y, et al. Hierarchical graphene oxide/polyaniline nanocomposites prepared by interfacial electrochemical polymerization for flexible solid-state supercapacitors[J]. Journal of Materials Chemistry A,2015,3(5):2135-2143. doi: 10.1039/C4TA05643D
    [51] Sun G, Xiao Z, Lin R, et al. Hybrid fibers made of molybdenum disulfide, reduced graphene oxide, and multi-walled carbon nanotubes for solid-state, flexible, asymmetric supercapacitors[J]. Angewandte Chemie International Ed in English,2015,127(15):4734-4739. doi: 10.1002/ange.201411533
    [52] Dhawale D S, Vinu A, Lokhande C D. Stable nanostructured polyaniline electrode for supercapacitor application[J]. Electrochimica Acta,2011,56(25):9482-9487. doi: 10.1016/j.electacta.2011.08.042
    [53] Wu Q, Xu Y, Yao Z, et al. Supercapacitors based on flexible graphene/polyaniline nanofiber composite films[J]. ACS Nano,2010,4(4):1963-1970. doi: 10.1021/nn1000035
  • 20210194-支撑材料.pdf
  • 加载中
图(6)
计量
  • 文章访问数:  486
  • HTML全文浏览量:  308
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-16
  • 修回日期:  2021-11-10
  • 网络出版日期:  2022-03-01
  • 刊出日期:  2022-03-30

目录

    /

    返回文章
    返回