留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于碳化钽涂层改性碳基材料的研究进展

刘兴亮 戴煜 王卓健 吴建

刘兴亮, 戴煜, 王卓健, 吴建. 基于碳化钽涂层改性碳基材料的研究进展[J]. 新型炭材料, 2021, 36(6): 1049-1061. doi: 10.1016/S1872-5805(21)60101-4
引用本文: 刘兴亮, 戴煜, 王卓健, 吴建. 基于碳化钽涂层改性碳基材料的研究进展[J]. 新型炭材料, 2021, 36(6): 1049-1061. doi: 10.1016/S1872-5805(21)60101-4
LIU Xing-liang, DAI Yu, WANG Zhuo-jian, WU Jian. Research progress on tantalum carbide coatings on carbon materials[J]. NEW CARBON MATERIALS, 2021, 36(6): 1049-1061. doi: 10.1016/S1872-5805(21)60101-4
Citation: LIU Xing-liang, DAI Yu, WANG Zhuo-jian, WU Jian. Research progress on tantalum carbide coatings on carbon materials[J]. NEW CARBON MATERIALS, 2021, 36(6): 1049-1061. doi: 10.1016/S1872-5805(21)60101-4

基于碳化钽涂层改性碳基材料的研究进展

doi: 10.1016/S1872-5805(21)60101-4
基金项目: 江西省青年基金项目(20192BAB216009),湖南省科技计划项目(2019WK2051),长沙市科技计划项目(kh2003023).
详细信息
    作者简介:

    刘兴亮,在读硕士. E-mail:1187849473@qq.com

    通讯作者:

    吴 建,博士,副教授. E-mail:wujian@ncu.edu.cn

  • 中图分类号: TB33

Research progress on tantalum carbide coatings on carbon materials

Funds: Jiangxi Youth Fund Project (20192BAB216009), Hunan Science and Technology Program Project (2019WK2051), Changsha Science and Technology Program Project (kh2003023).
More Information
    Corresponding author: WU Jian, Ph.D., Associate Professor. E-mail: wujian@ncu.edu.cn
  • 摘要: 石墨、炭纤维、炭/炭复合材料等碳基材料广泛应用在航空航天、能源汽车、化工等领域,但炭材料在高温有氧环境下易氧化和不耐氨气、耐划性能较差等缺点,难以满足人们对炭材料越来越苛刻的使用要求,严重制约其发展和实际应用。碳化钽(TaC)具有优异的高温力学稳定性及高温耐腐蚀、耐烧蚀等优点,并与炭材料具有良好的化学相容性和力学相容性,能够对炭材料有效保护,引起国内外研究人员对TaC涂层改性碳基材料的广泛研究。本文系统介绍了在石墨、炭纤维、炭/炭复合材料3种碳基材料表面制备TaC涂层的研究进展,阐述了化学气相沉积工艺(如气体流量、沉积温度、沉积压力)对TaC涂层改性碳基材料的影响规律,讨论了TaC涂层的发展趋势及展望了发展方向。
  • FIG. 1087.  FIG. 1087.

    FIG. 1087..  FIG. 1087.

    图  1  (a) TaC涂层石墨基座,(b) MOCVD-GaN外延生长后的TaC涂层石墨基座,(c) AlN升华生长后的TaC涂层石墨坩埚[29-31]

    Figure  1.  (a) Prepared TaC susceptor, (b) TaC susceptor under MOCVD-GaN epitaxial growth conditions, (c) Crucible conditions tested under AlN sublimation growth conditions[29-31].

    图  2  (a)原始炭纤维,(b)在1 000 ℃下1 h内制备的TaC涂层炭纤维SEM照片,(c)各纤维的TGA曲线(A. 原炭纤维,B. 在1 000 ℃下2 h内制备的TaC涂层炭纤维,C. 在1 100 ℃下4 h内制备的TaC涂层炭纤维)[25-26]

    Figure  2.  (a) Original carbon fiber; (b) SEM image of TaC coated carbon fiber prepared at 1 000 ℃ for 1 h, (c) TGA curve of each fiber (A. Original carbon fiber, B. TaC coated carbon fiber prepared at 1 000 ℃ for 2 h, C. TaC coated carbon fiber prepared within 4 h at 1 100 ℃) [25-26].

    图  3  具有PyC/SiC/TaC/PyC多层夹层的C/C复合材料的断口照片:(a)总览(b)局部放大图,(c)两种材料的界面剪切强度和抗弯强度对比图[57,58]

    Figure  3.  Fracture diagram of C/C composite material with PyC/ SiC/TaC/PyC multilayer sandwich: (a) overview (b) partial enlarged view,(C) Comparison of interface shear strength and bending strength of the two materials[57,58].

    图  4  在0.6 kPa下H2流量对涂层成分的影响: (a) 850 ℃,(b) 950 ℃. 1:不加H2;2:加100 mL·min−1的H2[41]

    Figure  4.  The influence of H2 flow rate on coating composition at 0.6 kPa: (a) 850 ℃, (b) 950 ℃. 1: without adding H2; 2: adding 100 mL·min−1 of H2 [41].

    图  5  沉积温度对(a)涂层成分及(b)晶粒大小的影响. 1: 800 ℃;2: 850 ℃;3: 900 ℃;4: 950 ℃;5: 1000 ℃[41]

    Figure  5.  The effect of deposition temperature on (a) coating composition and (b) grain size. 1: 800 ℃, 2: 850 ℃, 3: 900 ℃, 4: 950 ℃, 5: 1 000 ℃[41].

    图  6  不同沉积温度下涂层的表面形貌:(a) 1 100 ℃; (b) 1 200 ℃; (c) 1 300 ℃ [39]

    Figure  6.  Surface morphologies of coatings at different deposition temperatures: (a) 1 100 ℃, (b) 1 200 ℃, (c) 1 300 ℃[39].

    图  7  850 ℃下不同压力制备的涂层:(a) XRD谱图; (b) 晶粒大小; (c) 0.6 kPa下涂层SEM照片; (d) 8.0 kPa下涂层SEM照片[41]

    Figure  7.  Coatings prepared under different pressures at 850 ℃: (a) XRD patterns, (b) grain sizes, (c) coating SEM image at 0.6 kPa, (d) coating SEM image at 8.0 kPa [41].

    图  8  涂层结构示意图[62]

    Figure  8.  Sketch of the target coating structure[62].

    图  9  Hf(Ta)C涂层的截面结构和线性元素分布:(a)截面SEM照片;(b)区域A的放大图;(c)区域B的放大图像;(d)线性元素分布[63]

    Figure  9.  Cross-sectional structure and linear element distribution of Hf(Ta)C coating: (a) cross-sectional SEM image, (b) enlarged image of area A, (c) enlarged image of area B, (d) linear element distribution [63].

    图  10  多层TaC/SiC梯度涂层截面SEM照片[65]

    Figure  10.  SEM image of cross-section of multi-layer TaC/SiC gradient coating[65].

  • [1] Yang G, Guo HW, Xiao H, Jiang HY, et al. Out-of-plane stiffness analysis of kevlar/carbon fiber hybrid composite skins for a shear variable-sweep wing[J]. Applied Composite Materials,2021,28(5):1653-1673.
    [2] 刘玉婷, 李璐, 王嘉沛, 等. 碳纳米管对炭纤维/聚碳酸酯复合材料界面结合性能的影响[J]. 新型炭材料,2021,36(3):639-648. doi: 10.1016/S1872-5805(21)60035-5

    Liu Y T, Li L, Wang J P, et al. Effect of carbon nanotubes on interfacial properties of a carbon fiber/polycarbonate composite[J]. New Carbon Materials,2021,36(3):639-648. doi: 10.1016/S1872-5805(21)60035-5
    [3] Wang D K, Zhang J P, Dong Y, et al. Progress on graphitic carbon materials for potassium-based energy storage[J]. New Carbon Materials,2021,36(3):435-448. doi: 10.1016/S1872-5805(21)60039-2
    [4] Li G D, Xiong X, Huang K L. Ablation mechanism of TaC coating fabricated by chemical vapor deposition on carbon-carbon composites[J]. Transactions of Nonferrous Metals Society of China,2009,19(supp-S3):689-695.
    [5] Wang Z, Delacruz S, Tsai D S, et al. W/TaC/SiC sandwich stack for high temperature applications[J]. Ceramics International,2019,45(17):22292-22297. doi: 10.1016/j.ceramint.2019.07.255
    [6] Gild J, Zhang Y, Harrington T, et al. High-entropy metal diborides: a new class of high-entropy materials and a new type of ultrahigh temperature ceramics[J]. Scientific Reports,2016,6(1):1-10. doi: 10.1038/s41598-016-0001-8
    [7] 王鹏. 石墨表面耐烧蚀抗氧化复合涂层制备及性能研究[D]. 哈尔滨工业大学, 2016.

    Wang P. Preparation and performance of ablation and oxidation resistance composite coating on graphite surface[D]. Harbin Institute of Technology, 2016.
    [8] Gu X, Yang L, Ma X, et al. Ta addition effects on the structure, mechanical and thermal properties of sputtered Hf-Ta-C film[J]. Ceramics International,2019,45(12):15596-15602. doi: 10.1016/j.ceramint.2019.05.069
    [9] Wen Q, Riedel R, Ionescu E. Solid‐solution eeffects on the high‐temperature oxidation behavior of polymer‐derived (Hf, Ta)C/SiC and (Hf, Ti)C/SiC ceramic nanocomposites[J]. Advanced Engineering Materials,2019,21(5):1-11.
    [10] Li Z H, Wang Y L, Xong X, et al. Microstructure and growth behavior of Hf(Ta)C ceramic coating synthesized by low pressure chemical vapor deposition[J]. Journal of Alloys & Compounds,2017,70(5):79-88.
    [11] Zhang J, Zhang YL, Fu YQ, et al. Ablation behavior of HfC coating with different thickness for carbon/carbon composites at ultra-high temperature[J]. Journal of the European Ceramic Society,2021,41(3):1769-1778.
    [12] Yang J H, Guo Q G, Liu Z J, et al. The structure of an in-situ formed titanium-boron-carbon coating on a graphite substrate[J]. New Carbon Materials,2017,32(5):474-480. doi: 10.1016/S1872-5805(17)60135-5
    [13] 王雅雷. 化学气相渗透TaC、SiC/TaC改性C/C复合材料的制备及其力学性能[D]. 中南大学, 2008.

    Wang Y L. Preparation and mechanical properties of chemical vapor infiltration TaC and SiC/TaC modified C/C composites[D]. Central South University, 2008.
    [14] 李国栋. C/C 抗烧蚀TaC 、TaC/ SiC涂层的制备及其抗烧蚀机理[D]. 长沙: 中南大学, 2006.

    Li G D. Preparation of C/C anti-ablation TaC and TaC/SiC coatings and their anti-ablation mechanism[D]. Changsha: Central South University, 2006.
    [15] 沈小松, 王松, 李伟, 等. 碳基材料表面TaC涂层的研究进展[J]. 人工晶体学报,2017,46(6):1154-1159+1174. doi: 10.3969/j.issn.1000-985X.2017.06.034

    Shen X S, Wang S, Li W, et al. Research progress of TaC coatings on carbon-based materials[J]. Journal of Synthetic Crystals,2017,46(6):1154-1159+1174. doi: 10.3969/j.issn.1000-985X.2017.06.034
    [16] 张丽, 齐海涛, 徐永宽, 等. 高温化学气相沉积法制备致密碳化钽涂层[J]. 功能材料,2017,48(6):6183-6186+6192.

    Zhang L, Qi H T, Xu Y K, et al. Preparation of dense tantalum carbide coating by high temperature chemical vapor deposition method[J]. Journal of Functional Materials,2017,48(6):6183-6186+6192.
    [17] 张而耕, 黄彪, 周琼. TaC涂层的研究现状及应用[J]. 陶瓷学报,2017,38(1):8-12.

    Zhang E G, Huang B, Zhou Q. Research status and application of TaC coating[J]. Journal of Ceramics,2017,38(1):8-12.
    [18] 闫志巧, 肖鹏, 熊翔, 等. TaC粉末/涂层制备技术的研究进展[J]. 材料导报,2005,19(12):80-83+90. doi: 10.3321/j.issn:1005-023X.2005.12.022

    Yan Z Q, Xiao P, Xiong X, et al. Research progress of TaC powder/coating preparation technology[J]. Materials Review,2005,19(12):80-83+90. doi: 10.3321/j.issn:1005-023X.2005.12.022
    [19] Preiss H, Schultze D, Klobes P. Formation of NbC and TaC from gel-derived precursors[J]. Journal of the European Ceramic Society[J],1997,17(12):1423-1435. doi: 10.1016/S0955-2219(97)00012-5
    [20] 姚栋嘉, 李贺军, 付前刚, 等. C/C复合材料Ta2O5-TaC/SiC抗氧化抗烧蚀涂层研究[J]. 中国材料进展,2011,30(11):1-5+39.

    Yao D J, Li H J, Fu Q G, et al. Research on Ta2O5-TaC/SiC anti-oxidation and anti-ablation coating for C/C composites[J]. Progress in Materials in China,2011,30(11):1-5+39.
    [21] 马庆芳, 方荣生. 实用物理性质手册[M]. 农业机械出版社, 1986.

    Ma Q F, Fang R S. Practical manual on physical properties[M]. Beijing: Agricultural Machinery Press, 1986.
    [22] 李江鸿, 张红波, 熊翔, 等. C/C复合材料表面TaC涂层的制备和生成机制[J]. 稀有金属材料与工程,2009,38(3):496-499. doi: 10.3321/j.issn:1002-185X.2009.03.029

    Li J H, Zhang H B, Xiong X, et al. Preparation and formation mechanism of TaC coating on the surface of C/C composites[J]. Rare Metal Materials and Engineering,2009,38(3):496-499. doi: 10.3321/j.issn:1002-185X.2009.03.029
    [23] 陈为亮, 钟海云, 柴立元. 钽粉真空碳化机理[J]. 中南工业大学学报,1996,27(1):48-51.

    Chen W L, Zhong H Y, Chai L Y. Vacuum carbonization mechanism of tantalum powder[J]. Journal of Central South University of Technology,1996,27(1):48-51.
    [24] 闫志巧, 熊翔, 肖鹏, 等. Ta-C化合反应生成TaC的过程[J]. 稀有金属材料与工程,2006,35(z1):209-212. doi: 10.3321/j.issn:1002-185X.2006.z1.052

    Yan Z Q, Xiong X, Xiao P, et al. The process of Ta-C compound reaction to form TaC[J]. Rare Metal Materials and Engineering,2006,35(z1):209-212. doi: 10.3321/j.issn:1002-185X.2006.z1.052
    [25] 董志军, 李轩科, 袁观明, 等. 熔盐反应法在碳纤维表面制备TaC涂层[J]. 材料导报,2009,23(8):77-80. doi: 10.3321/j.issn:1005-023X.2009.08.024

    (Dong Z J, Li X K, Yuan G M, et al. Preparation of TaC coating on carbon fiber surface by molten salt reaction method[J]. Materials Review,2009,23(8):77-80. doi: 10.3321/j.issn:1005-023X.2009.08.024
    [26] Dong Z J, Li X K, Yuan G M, et al. Fabrication of protective tantalum carbide coatings on carbon fibers using a molten salt method[J]. Applied Surface Science,2008,254(18):5936-5940. doi: 10.1016/j.apsusc.2008.03.158
    [27] 何捍卫, 周科朝, 熊翔. C/C复合材料抗烧蚀TaC涂层的制备[J]. 稀有金属材料与工程,2004,33(5):490-493. doi: 10.3321/j.issn:1002-185X.2004.05.010

    He H W, Zhou K C, Xiong X. Preparation of anti-ablation TaC coating for C/C composites[J]. Rare Metal Materials and Engineering,2004,33(5):490-493. doi: 10.3321/j.issn:1002-185X.2004.05.010
    [28] 穆翠红, 刘辉, 迟伟东, 等. 中间相沥青基碳纤维表面TaC涂层的研究[J]. 化工进展, 2010, 29(8): 1521-1524+1546.

    Mu C H, Liu H, Chi W D, et al. Study on TaC coating on the surface of mesophase pitch-based carbon fiber[J]. Chemical Industry and Engineering Progress, 2010, 29(8): 1521-1524 +1546.
    [29] Nakamura D, Suzumura A, Shigetoh K. Sintered tantalum carbide coatings on graphite substrates: highly reliable protective coatings for bulk and epitaxial growth[J]. Applied Physics Letters,2015,106(8):1-5.
    [30] Nakamura D, Kimura T, Narita T, et al. TaC-coated graphite prepared via a wet ceramic process: application to CVD susceptors for epitaxial growth of widebandgap semiconductors[J]. Journal of Crystal Growth,2017,47(8):163-173.
    [31] Nakamura D, Narita T, Kimura T. Resistive heater element made of highly durable TaC-coated graphite for high-temperature and highly corrosive processes: application to MOCVD GaN epitaxial growth[J]. Japanese Journal of Applied Physics,2019,58(7):1-9.
    [32] 沈小松. 石墨表面TaC陶瓷涂层料浆烧结制备及性能研究[D]. 国防科技大学, 2017.

    Shen X S. Sintering preparation and performance of TaC ceramic coating slurry on graphite surface[D]. National University of Defense Technology, 2017.
    [33] 陆健, 吕晨, 吴盾, 等. 等离子喷涂TaC和NbC涂层的结构和耐磨耐蚀性能[J]. 材料保护,2018,51(12):1-5.

    Lu J, Lv C, Wu D, et al. Structure, wear and corrosion resistance of plasma sprayed TaC and NbC coatings[J]. Material Protection,2018,51(12):1-5.
    [34] Wang Y J, Li H J, Fu Q G, et al. Ablation behavior of a TaC coating on SiC coated C/C composites at different temperatures[J]. Ceramics International,2013,39(1):359-365. doi: 10.1016/j.ceramint.2012.06.034
    [35] Balani K, Gonzalez G, Agarwal A, et al. Synthesis, microstructural characterization, and mechanical property evaluation of vacuum plasma sprayed tantalum carbide[J]. Journal of the American Ceramic Society,2010,89(4):1419-1425.
    [36] Trignan P L, Berardo M, Charai A, et al. Microstructure of plasma-sprayed TaC coatings[J]. Elsevier,1994,248(1):12-17.
    [37] Trignan P L, Bérardo M, Gastaldi J, et al. Influence of plasma spraying parameters on the carbon content and porosity of TaC coatings[J]. Surface & Coatings Technology,1996,79(1-3):113-118.
    [38] 陈招科, 熊翔, 李国栋, 等. 化学气相沉积TaC涂层的微观形貌及晶粒择优生长[J]. 中国有色金属学报,2008,18(8):1377-1382. doi: 10.3321/j.issn:1004-0609.2008.08.002

    Chen Z K, Xiong X, Li G D, et al. Micromorphology and preferential grain growth of chemical vapor deposition TaC coatings[J]. The Chinese Journal of Nonferrous Metals,2008,18(8):1377-1382. doi: 10.3321/j.issn:1004-0609.2008.08.002
    [39] Long Y, Athar J, Chen J, et al. The effect of deposition temperature on the microstructure and mechanical properties of TaC coatings[J]. Materials Letters,2014,121(1):202-205.
    [40] Kim H M, Choi K, Shim K B, et al. Thermodynamic prediction of TaC CVD process in TaCl5-C3H6-H2 system[J]. Korean Journal of Materials Research,2018,28(2):75-81. doi: 10.3740/MRSK.2018.28.2.75
    [41] Chen Z K, Xiong X, Huang B Y, et al. Phase composition and morphology of TaC coating on carbon fibers by chemical vapor infiltration[J]. Thin Solid Films,2008,516(23):8248-8254. doi: 10.1016/j.tsf.2008.03.016
    [42] 李斌. TaC陶瓷改性C/C复合材料的设计、制备及其性能[D]. 中南大学, 2013.

    Li B. Design, preparation and performance of TaC ceramic modified C/C composites[D]. Central South University, 2013.
    [43] Teghil R, Alessio L D, Maria G D, et al. Pulsed-laser deposition and characterization of TaC films[J]. Applied Surface Science,1995,86(1):190-195.
    [44] Nyberg H, Tokoroyama T, Wiklund U, et al. Design of low-friction PVD coating systems with enhanced running-in performance-carbon overcoats on TaC/aC coatings[J]. Surface & Coatings Technology,2013,22(2):48-54.
    [45] Dua A K, George V C. TaC coatings prepared by hot filament chemical vapour deposition: characterization and properties[J]. Elsevier,1994,247(1):34-38.
    [46] Zhang Q Y, Mei X X, Yang D Z, et al. Preparation, structure and properties of TaN and TaC films obtained by ion beam assisted deposition[J]. Nuclear Instruments and Methods in Physics Research Section B Beam Interactions with Materials and Atoms,1997,127(none):664-668.
    [47] 陈大军, 吴护林, 贾代金, 等. 国内TaC-C/C复合材料制备及其抗氧化性能研究新进展[J]. 材料导报,2010,24(S1):463-466+472.

    Chen D J, Wu H L, Jia D J, et al. New progress in the preparation of TaC-C/C composites and their antioxidant properties in China[J]. Materials Review,2010,24(S1):463-466+472.
    [48] Balani K, Gonzalez G, Agarwal A, et al. Synthesis, microstructural characterization, and mechanical property evaluation of vacuum plasma sprayed tantalum carbide[J]. Journal of the American Ceramic Society,2006,89(4):1419-1425. doi: 10.1111/j.1551-2916.2005.00899.x
    [49] 吕东泽, 陈招科, 熊翔, 等. 化学气相沉积C-TaC涂层的结构及其摩擦性能[J]. 材料研究学报,2016,30(9):690-696.

    Lv D Z, Chen Z K, Xiong X, et al. Structure and friction properties of chemical vapor deposition C-TaC coatings[J]. Chinese Journal of Materials Research,2016,30(9):690-696.
    [50] Kumar S, Mondal S, Kumar A, et al. Chemical vapor deposition of TaC/SiC on graphite tube and its ablation and microstructure studies[J]. Coatings,2017,7(7):1-12.
    [51] Liu X M, Xu H B, Xie F T, et al. Light-weight and highly flexible TaC modified PyC fiber fabrics derived from cotton fiber textile with excellent electromagnetic shielding effectiveness[J]. Chemical Engineering Journal,2020,387(124085):1-12.
    [52] Cui Z W, Li X K, Cong Y, et al. Synthesis of tantalum carbide from multiwall carbon nanotubes in a molten salt medium[J]. New Carbon Materials,2017,32(3):205-212. doi: 10.1016/S1872-5805(17)60117-3
    [53] Feng G H, Li H J, Yao X Y, et al. Effect of tantalum carbide on the ablation behaviors of hafnium carbide coating for C/C composites under single and cyclic oxyacetylene torch environments[J]. Surface and Coatings Technology. 2020, 400(no): 126219-126228.
    [54] Feng G H, Li H J, Yao X Y, et al. Ablation resistance of TaC-modified HfC coating prepared by supersonic plasma spraying for SiC-coated carbon/carbon composites[J]. Ceramics Internatio-nal,2019,45(14):17936-17945.
    [55] Kim H M, Choi S C, Kim Y, et al. Thermal shock resistance of TaC/SiC coatings on carbon/carbon composites by the CVD process[J]. Journal of Ceramic Processing Research,2020,21(1):92-98. doi: 10.36410/jcpr.2020.21.1.92
    [56] Ren J C, Feng E R, Zhang Y L, et al. Microstructure and anti-ablation performance of HfC-TaC and HfC-ZrC coatings synthesized by CVD on C/C composites[J]. Ceramics international,2020,46(8):10147-10158. doi: 10.1016/j.ceramint.2020.01.006
    [57] Long Y, Javed A, Zhao Y, et al. Fiber/matrix interfacial shear strength of C/C composites with PyC–TaC–PyC and PyC–SiC–TaC–PyC multi-interlayers[J]. Ceramics International,2013,39(6):6489-6496. doi: 10.1016/j.ceramint.2013.01.080
    [58] Xiong X, Wang Y L, Chen Z K, et al. Mechanical properties and fracture behaviors of C/C composites with PyC/TaC/PyC, PyC/SiC/TaC/PyC multi-interlayers[J]. Solid State Sciences,2009,11(8):1386-1392. doi: 10.1016/j.solidstatesciences.2009.04.021
    [59] 张帆, 李国栋, 熊翔, 等. Ar气流量对石墨表面CVD TaC涂层生长与表面形貌的影响[J]. 粉末冶金材料科学与工程,2010,15(5):484-490. doi: 10.3969/j.issn.1673-0224.2010.05.013

    Zhang F, Li G D, Xiong X, et al. Effect of Ar gas flow rate on growth and surface morphology of CVD TaC coating on graphite surface[J]. Materials Science and Engineering of Powder Metallurgy,2010,15(5):484-490. doi: 10.3969/j.issn.1673-0224.2010.05.013
    [60] 李国栋, 熊翔, 黄伯云. 温度对CVD-TaC涂层组成、形貌与结构的影响[J]. 中国有色金属学报,2005,15(4):565-571. doi: 10.3321/j.issn:1004-0609.2005.04.012

    Li G D, Xiong X, Huang B Y. The influence of temperature on the composition, morphology and structure of CVD-TaC coatings[J]. The Chinese Journal of Nonferrous Metals,2005,15(4):565-571. doi: 10.3321/j.issn:1004-0609.2005.04.012
    [61] 陈招科, 熊翔, 李国栋, 等. 工艺参数对CVI-TaC沉积速率的影响[J]. 中国有色金属学报,2006,16(12):2047-2053. doi: 10.3321/j.issn:1004-0609.2006.12.010

    Chen Z K, Xiong X, Li G D, et al. The influence of process parameters on the deposition rate of CVI-TaC[J]. The Chinese Journal of Nonferrous Metals,2006,16(12):2047-2053. doi: 10.3321/j.issn:1004-0609.2006.12.010
    [62] Feng G H, Li H J, Yao X Y, et al. Ablation resistance of HfC-TaC/HfC-SiC alternate coating for SiC-coated carbon/carbon composites under cyclic ablation[J]. Journal of the European Ceramic Society,2021,41(6):3207-3218. doi: 10.1016/j.jeurceramsoc.2021.01.050
    [63] Wang Y L, Xiong X, Li G D, et al. Preparation and ablation properties of Hf(Ta)C co-deposition coating for carbon/carbon composites[J]. Corrosion Science,2013,6(6):177-182.
    [64] 宋永忠, 李国栋, 程家, 等. CVD法制备ZrC涂层与ZrC-TaC共沉积涂层的烧蚀性能[J]. 粉末冶金材料科学与工程,2016,21(6):952-960. doi: 10.3969/j.issn.1673-0224.2016.06.019

    Song Y Z, Li G D, Cheng J, et al. Ablation performance of ZrC coating and ZrC-TaC co-deposition coating prepared by CVD method[J]. Powder Metallurgy Materials Science and Engineering,2016,21(6):952-960. doi: 10.3969/j.issn.1673-0224.2016.06.019
    [65] Li G D, Xiong X, Huang B Y, et al. Structural characteristics and formation mechanisms of crack-free multilayer TaC/SiC coatings on carbon-carbon composites[J]. Transactions of Nonferrous Metals Society of China,2008,18(2):255-261. doi: 10.1016/S1003-6326(08)60045-X
    [66] Zhao N N, Xua Y H, Zhong L S, et al. Fabrication, microstructure and abrasive wear characteristics of an in situ tantalum carbide ceramic gradient composite[J]. Ceramics International,2015,41(10):12950-12957. doi: 10.1016/j.ceramint.2015.06.138
    [67] 赵娜娜, 许云华, 钟黎声, 等. TaC增强铁基梯度复合材料的原位生成及其磨粒磨损特性[J]. 材料研究学报,2014,28(8):567-572. doi: 10.11901/1005.3093.2013.897

    (Zhao N N, Xu Y H, Zhong L S, et al. In-situ formation and abrasive wear characteristics of TaC reinforced Fe-based gradient composites[J]. Chinese Journal of Materials Research,2014,28(8):567-572. doi: 10.11901/1005.3093.2013.897
    [68] Chen Z K, Wu Y, Chen Y H, et al. Preparation and oxidation behavior of Cf/C–TaC composites[J]. Materials Chemistry and Physics,2020,25(4):1-8.
    [69] Xi W, Ding W Q, Yu S W, et al. Corrosion behavior of TaC/Ta composite coatings on C17200 alloy by plasma surface alloying and CVD carburizing[J]. Surface and Coatings Technology,2019,35(9):426-432.
  • 加载中
图(11)
计量
  • 文章访问数:  427
  • HTML全文浏览量:  252
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-20
  • 修回日期:  2021-10-30
  • 网络出版日期:  2021-11-25
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回