留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Optimizing the carbon coating to eliminate electrochemical interface polarization in a high performance silicon anode for use in a lithium-ion battery

QI Zhi-yan DAI Li-qin WANG Zhe-fan XIE Li-jing CHEN Jing-peng CHENG Jia-yao SONG Ge LI Xiao-ming SUN Guo-hua CHEN Cheng-meng

齐志燕, 戴丽琴, 王哲帆, 谢莉婧, 陈景鹏, 成家瑶, 宋歌, 李晓明, 孙国华, 陈成猛. 优化碳质涂层以消除高性能硅阳极的电化学界面极化. 新型炭材料(中英文), 2022, 37(1): 245-258. doi: 10.1016/S1872-5805(22)60580-8
引用本文: 齐志燕, 戴丽琴, 王哲帆, 谢莉婧, 陈景鹏, 成家瑶, 宋歌, 李晓明, 孙国华, 陈成猛. 优化碳质涂层以消除高性能硅阳极的电化学界面极化. 新型炭材料(中英文), 2022, 37(1): 245-258. doi: 10.1016/S1872-5805(22)60580-8
QI Zhi-yan, DAI Li-qin, WANG Zhe-fan, XIE Li-jing, CHEN Jing-peng, CHENG Jia-yao, SONG Ge, LI Xiao-ming, SUN Guo-hua, CHEN Cheng-meng. Optimizing the carbon coating to eliminate electrochemical interface polarization in a high performance silicon anode for use in a lithium-ion battery. New Carbon Mater., 2022, 37(1): 245-258. doi: 10.1016/S1872-5805(22)60580-8
Citation: QI Zhi-yan, DAI Li-qin, WANG Zhe-fan, XIE Li-jing, CHEN Jing-peng, CHENG Jia-yao, SONG Ge, LI Xiao-ming, SUN Guo-hua, CHEN Cheng-meng. Optimizing the carbon coating to eliminate electrochemical interface polarization in a high performance silicon anode for use in a lithium-ion battery. New Carbon Mater., 2022, 37(1): 245-258. doi: 10.1016/S1872-5805(22)60580-8

优化碳质涂层以消除高性能硅阳极的电化学界面极化

doi: 10.1016/S1872-5805(22)60580-8
基金项目: 2020年山西省关键核心技术和共性技术研发攻关专项(2020XXX014);国家重点研发计划(2020YFB1505800)
详细信息
    通讯作者:

    陈成猛,研究员. E-mail:ccm@sxicc.ac.cn

  • 中图分类号: TB33

Optimizing the carbon coating to eliminate electrochemical interface polarization in a high performance silicon anode for use in a lithium-ion battery

Funds: All authors appreciate the financial support of Research and Development Project of Key Core and Common Technology of Shanxi Province (2020XXX014), National Key Research and Development (R&D) Program of China (2020YFB1505800)
More Information
  • 摘要: 有序碳和无序碳都普遍被用作硅(Si)的复合材料。但是具有不同结晶度和孔结构的碳对硅基负极电化学性能的影响仍存在争议。本工作在严格控制碳含量和表面官能团的基础上,选择沥青(Pitch)和酚醛树脂(PR)作为有序碳和无序碳的前驱体,制备了硅碳复合材料(Si@C)并系统地研究了其电化学行为。有序的晶体结构有利于复合物中的电子传输,中孔和大孔有利于锂离子的扩散。具有有序结构和小孔容的碳质涂层为Si的膨胀提供了很好的缓冲,电极在50次循环后仍保持结构完整性。然而,无序和多孔的结构降低了结构的稳定性并产生了很大的极化,这使得循环过程中体积不断膨胀,导致电化学性能较差。Si@C-Pitch在5 A g−1下的容量是Si@C-PR的8倍,在0.5 A g−1下100次循环后的容量保持率是Si@C-PR的1.9倍。该研究可为Si@C负极中炭材料的选择提供了理论指导。
  • FIG. 1226.  FIG. 1226.

    FIG. 1226..  FIG. 1226.

    Figure  1.  (a) Preparation process of silicon-carbon composites; SEM images of (b) pure Si particles, (c) Si@C-PR, (d) Si@C-Pitch. (e) The weight loss analysis of composites; TEM images of (f) Si@C-PR, (g) Si@C-Pitch.

    Figure  2.  (a) FT-IR spectra of Si@C composites; (b) XPS survey spectra; XPS fine deconvolution results of (c) C 1s and (d) O 1s.

    Figure  3.  HR-TEM images of (a) Si@C-Pitch and (b) Si@C-PR, The insets are (c) XRD pattern, (d) Raman spectra, (e) UV-vis spectra, (f) Powder conductivity plot.

    Figure  4.  N2 adsorption-desorption isotherm of (a) Si@C-PR and (b) Si@C-Pitch. The insets are their corresponding pore size distribution models.

    Figure  5.  (a-b) Initial galvanostatic charge/discharge profiles at 0.1 A g−1, CV curve of (c) Si@C-PR and (d) Si@C-Pitch, (e) Rate capacity at various current density, (f) Nyquist curves after first cycle.

    Figure  6.  (a) The cycling performance at 0.5 A g−1, The electrochemical impedance of (b) Si@C-PR and (c) Si@C-Pitch after different cycles, (d) The charge/discharge curves at 5 A g−1, (e) The corresponding dQ/dv plots of (d).

    Figure  7.  The electrode cross-section SEM images of (a-a50) Si@C-Pitch, (b-b50) Si@C-PR. (a, b) The fresh electrodes, (a1, b1) after firet cycle, (a10, b10) after 10 cycles, (a50, b50) after 50 cycles, (c) Schematic diagram of the expansion process of different Si@C composites.

    Table  1.   The relative content of function groups according to C 1s spectrogram.

    SamplesC―C (284.6 eV)C―O (285.5 eV)C=O (286.6 eV)
    Si@C-PR64.5%20.6%14.9%
    Si@C-Pitch66.3%22.2%11.5%
    下载: 导出CSV

    Table  2.   The relative content of function groups according to O 1s spectrogram.

    SamplesC―O (285.5 eV)C=O (286.6 eV)O―H (534.5 eV)
    Si@C-PR29.3%57.3%13.4%
    Si@C-Pitch27.3%56.9%15.8%
    下载: 导出CSV

    Table  3.   The crystalline structure parameters of Si@C-PR and Si@C-Pitch.

    Samples2θ (°)d(002) (nm)Lc (nm)La (nm)N
    Si@C-PR22.150.4012.2016.76
    Si@C-Pitch25.240.3524.3317.613
    下载: 导出CSV
  • [1] Luo Z, Xiao Q, Lei G, et al. Si nanoparticles/graphene composite membrane for high performance silicon anode in lithium ion batteries[J]. Carbon,2016,98:373-380. doi: 10.1016/j.carbon.2015.11.031
    [2] Xiang J, Liu H, Na R, et al. Facile preparation of void-buffered Si@TiO2/C microspheres for high-capacity lithium ion battery anodes[J]. Electrochimica Acta,2020,337:135841-135849. doi: 10.1016/j.electacta.2020.135841
    [3] Liu N, Liu J, Jia D, et al. Multi-core yolk-shell like mesoporous double carbon-coated silicon nanoparticles as anode materials for lithium-ion batteries[J]. Energy Storage Materials,2019,18:165-173. doi: 10.1016/j.ensm.2018.09.019
    [4] Zhang X, Wang D, Qiu X, et al. Stable high-capacity and high-rate silicon-based lithium battery anodes upon two-dimensional covalent encapsulation[J]. Nature Communications,2020,11(1):3826-3834. doi: 10.1038/s41467-020-17686-4
    [5] Liu N, Mamat X, Jiang R, et al. Facile high-voltage sputtering synthesis of three-dimensional hierarchical porous nitrogen-doped carbon coated Si composite for high performance lithium-ion batteries[J]. Chemical Engineering Journal,2018,343:78-85. doi: 10.1016/j.cej.2018.02.111
    [6] Xiao Z, Yu C, Lin X, et al. TiO2 as a multifunction coating layer to enhance the electrochemical performance of SiOx@TiO2@C composite as anode material[J]. Nano Energy,2020,77:105082-105093. doi: 10.1016/j.nanoen.2020.105082
    [7] Li J, Xiao X, Cheng Y T, et al. Atomic layered coating enabling ultrafast surface kinetics at silicon electrodes in lithium ion batteries[J]. The Journal of Physical Chemistry Letters,2013,4(20):3387-3391. doi: 10.1021/jz4018255
    [8] Wallas J M, Welch B C, Wang Y, et al. Spatial molecular layer deposition of ultrathin polyamide to stabilize silicon anodes in lithium-ion batteries[J]. ACS Applied Energy Materials,2019,2(6):4135-4143. doi: 10.1021/acsaem.9b00326
    [9] Shi J, Gao H, Hu G, et al. Core-shell structured Si@C nanocomposite for high-performance Li-ion batteries with a highly viscous gel as precursor[J]. Journal of Power Sources,2019,438:227001-227009. doi: 10.1016/j.jpowsour.2019.227001
    [10] Yun Q, Qin X, Lv W, et al. “Concrete” inspired construction of a silicon/carbon hybrid electrode for high performance lithium ion battery[J]. Carbon,2015,93:59-67. doi: 10.1016/j.carbon.2015.05.032
    [11] Luo W, Wang Y, Chou S, et al. Critical thickness of phenolic resin-based carbon interfacial layer for improving long cycling stability of silicon nanoparticle anodes[J]. Nano Energy,2016,27:255-264. doi: 10.1016/j.nanoen.2016.07.006
    [12] Choi S H, Nam G, Chae S, et al. Robust pitch on silicon nanolayer-embedded graphite for suppressing undesirable volume expansion[J]. Advanced Energy Materials,2019,9(4):1803121-1803129. doi: 10.1002/aenm.201803121
    [13] Fang G, Deng X, Zou J, et al. Amorphous/ordered dual carbon coated silicon nanoparticles as anode to enhance cycle performance in lithium ion batteries[J]. Electrochimica Acta,2019,295:498-506. doi: 10.1016/j.electacta.2018.10.186
    [14] He Y, Han F, Wang F, et al. Optimal microstructural design of pitch-derived soft carbon shell in yolk-shell silicon/carbon composite for superior lithium storage[J]. Electrochimica Acta,2021,373:137924-137934. doi: 10.1016/j.electacta.2021.137924
    [15] Fan S, Wang H, Qian J, et al. Covalently bonded silicon/carbon nanocomposites as cycle-stable anodes for li-ion batteries[J]. ACS Applied Materials Interfaces,2020,12(14):16411-16416. doi: 10.1021/acsami.0c00676
    [16] Chen C Y, Liang A H, Huang C L, et al. The pitch-based silicon-carbon composites fabricated by electrospraying technique as the anode material of lithium ion battery[J]. Journal of Alloys and Compounds,2020,844:156025-156033. doi: 10.1016/j.jallcom.2020.156025
    [17] Liu Y, Tai Z, Zhou T, et al. An All-integrated anode via interlinked chemical bonding between double-shelled-yolk-structured silicon and binder for lithium-ion batteries[J]. Advanced Materials,2017,29(44):1703028-1703038. doi: 10.1002/adma.201703028
    [18] Liu J, Duan Y, Song L, et al. Constructing sandwich-like polyaniline/graphene oxide composites with tunable conjugation length toward enhanced microwave absorption[J]. Organic Electronics,2018,63:175-183. doi: 10.1016/j.orgel.2018.09.017
    [19] Wang F, Song C, Zhao B, et al. One-pot solution synthesis of carbon-coated silicon nanoparticles as an anode material for lithium-ion batteries[J]. Chemical Communications,2020,56(7):1109-1112. doi: 10.1039/C9CC07255A
    [20] Zeng Y, Huang Y, Liu N. et al. N-doped porous carbon nanofibers sheathed pumpkin-like Si/C composites as free-standing anodes for lithium-ion batteries[J]. Journal of Energy Chemistry,2021,54:727-735. doi: 10.1016/j.jechem.2020.06.022
    [21] Zhu X, Chen H, Wang Y, et al. Growth of silicon/carbon microrods on graphite microspheres as improved anodes for lithium-ion batteries[J]. Journal of Materials Chemistry A,2013,1(14):4483-4489. doi: 10.1039/c3ta01474f
    [22] Feng W, Qin M, Lv P, et al. A three-dimensional nanostructure of graphite intercalated by carbon nanotubes with high cross-plane thermal conductivity and bending strength[J]. Carbon,2014,77:1054-1064. doi: 10.1016/j.carbon.2014.06.021
    [23] Lee G J, Pyun S I. Effect of microcrystallite structures on electrochemical characteristics of mesoporous carbon electrodes for electric double-layer capacitors[J]. Electrochimica Acta,2006,51(15):3029-3038. doi: 10.1016/j.electacta.2005.08.037
    [24] Jing S, Jiang H, Hu Y, et al. Face-to-face contact and open-void coinvolved Si/C nanohybrids lithium-ion battery anodes with extremely long cycle life[J]. Advanced Functional Materials,2015,25(33):5395-5401. doi: 10.1002/adfm.201502330
    [25] Knight D S, White W B. Characterization of diamond films by Raman spectroscop[J]. Journal of Materials Research,1989,4:385-393. doi: 10.1557/JMR.1989.0385
    [26] Hu C, Sedghi S, Silvestre-Albero A, et al. Raman spectroscopy study of the transformation of the carbonaceous skeleton of a polymer-based nanoporous carbon along the thermal annealing pathway[J]. Carbon,2015,85:147-158. doi: 10.1016/j.carbon.2014.12.098
    [27] Chen J P, Wang Z F, Yi Z L, et al. SiC whiskers nucleated on rGO and its potential role in thermal conductivity and electronic insulation[J]. Chemical Engineering Journal,2021,423:130181-130189. doi: 10.1016/j.cej.2021.130181
    [28] Lai Q, Zhu S, Luo X, et al. Ultraviolet-visible spectroscopy of graphene oxides[J]. AIP Advances,2012,2(3):032146-032151. doi: 10.1063/1.4747817
    [29] Niu Y, Fang Q, Zhang X, et al. Structural evolution, induced effects and graphitization mechanism of reduced graphene oxide sheets/polyimide composites[J]. Composites Part B,2018,134:127-132. doi: 10.1016/j.compositesb.2017.09.047
    [30] Xu H, Ding M, Li D, et al. Silicon nanoparticles coated with nanoporous carbon as a promising anode material for lithium ion batteries[J]. New Journal of Chemistry,2020,44(40):17323-17332. doi: 10.1039/D0NJ03918G
    [31] Memarzadeh Lotfabad E, Kalisvaart P, Kohandehghan A. et al. Origin of non-SEI related coulombic efficiency loss in carbons tested against Na and Li[J]. Journal of Materials Chemistry A,2014,2(46):19685-19695. doi: 10.1039/C4TA04995K
    [32] Wang Y, Tian W, Wang L, et al. A tunable molten-salt route for scalable synthesis of ultrathin amorphous carbon nanosheets as high-performance anode materials for lithium-ion batteries[J]. ACS Applied Materials Interfaces,2018,10(6):5577-5585. doi: 10.1021/acsami.7b18313
    [33] Yao W, Chen J, Zhan L, et al. Two-dimensional porous sandwich-like C/Si-graphene-Si/C nanosheets for superior lithium storage[J]. ACS Applied Materials Interfaces,2017,9(45):39371-39379. doi: 10.1021/acsami.7b11721
    [34] Mochida I, Korai Y, Ku C H, et al. Chemistry of synthesis, structure, preparation and application of aromatic-derived mesophase pitch[J]. Carbon,2000,38:305-328. doi: 10.1016/S0008-6223(99)00176-1
    [35] KO T H, Kuo W S, Chang Y H. Microstructural changes of phenolic resinduring pyrolysis[J]. Journal of Applied Polymer Science,2000,81(5):1084-1089.
    [36] Tang H, Tu J P, Liu X Y, et al. Self-assembly of Si/honeycomb reduced graphene oxide composite film as a binder-free and flexible anode for Li-ion batteries[J]. Journal of Materials Chemistry A,2014,2(16):5834-5840. doi: 10.1039/C3TA15395A
    [37] Zhou M, Cai T, Pu F, et al. Graphene/carbon-coated Si nanoparticle hybrids as high-performance anode materials for Li-ion batteries[J]. ACS Applied Materials Interfaces,2013,5(8):3449-3455. doi: 10.1021/am400521n
    [38] Liang G, Qin X, Zou J, et al. Electrosprayed silicon-embedded porous carbon microspheres as lithium-ion battery anodes with exceptional rate capacities[J]. Carbon,2018,127:424-431. doi: 10.1016/j.carbon.2017.11.013
    [39] Li Y, Mu L, Hu Y S, et al. Pitch-derived amorphous carbon as high performance anode for sodium-ion batteries[J]. Energy Storage Materials,2016,2:139-145. doi: 10.1016/j.ensm.2015.10.003
    [40] He Y, Xiang K, Zhou W, et al. Folded-hand silicon/carbon three-dimensional networks as a binder-free advanced anode for high-performance lithium-ion batteries[J]. Chemical Engineering Journal,2018,353:666-678. doi: 10.1016/j.cej.2018.07.165
    [41] Chen Z, Chao D, Liu J, et al. 1D nanobar-like LiNi0.4Co0.2Mn0.4O2 as a stable cathode material for lithium-ion batteries with superior long-term capacity retention and high rate capability[J]. Journal of Materials Chemistry A,2017,5(30):15669-15675. doi: 10.1039/C7TA02888A
    [42] Huang Q, Loveridge M J, Genieser R, et al. Electrochemical evaluation and phase-related impedance sudies on silicon-few layer graphene (FLG) composite electrode systems[J]. Scientific Reports,2018,8(1):1386-1394. doi: 10.1038/s41598-018-19929-3
    [43] Michan A L, Divitini G, Pell A J, et al. Solid electrolyte interphase growth and capacity loss in silicon electrodes[J]. Journal of the American Chemical Society,2016,138(25):7918-7931. doi: 10.1021/jacs.6b02882
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  698
  • HTML全文浏览量:  438
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-04
  • 修回日期:  2021-12-21
  • 网络出版日期:  2021-12-21
  • 刊出日期:  2022-02-01

目录

    /

    返回文章
    返回