留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Peat-derived nitrogen-doped porous carbons as photothermal-assisted visible-light photocatalysts for water splitting

BAI Jin-peng XIAO Nan SONG Xue-dan XIAO Jian QIU Jie-shan

白金鹏, 肖南, 宋雪旦, 肖剑, 邱介山. 泥碳基氮掺杂多孔炭用于光热辅助可见光光解水制氢. 新型炭材料(中英文), 2022, 37(3): 585-594. doi: 10.1016/S1872-5805(22)60593-6
引用本文: 白金鹏, 肖南, 宋雪旦, 肖剑, 邱介山. 泥碳基氮掺杂多孔炭用于光热辅助可见光光解水制氢. 新型炭材料(中英文), 2022, 37(3): 585-594. doi: 10.1016/S1872-5805(22)60593-6
BAI Jin-peng, XIAO Nan, SONG Xue-dan, XIAO Jian, QIU Jie-shan. Peat-derived nitrogen-doped porous carbons as photothermal-assisted visible-light photocatalysts for water splitting. New Carbon Mater., 2022, 37(3): 585-594. doi: 10.1016/S1872-5805(22)60593-6
Citation: BAI Jin-peng, XIAO Nan, SONG Xue-dan, XIAO Jian, QIU Jie-shan. Peat-derived nitrogen-doped porous carbons as photothermal-assisted visible-light photocatalysts for water splitting. New Carbon Mater., 2022, 37(3): 585-594. doi: 10.1016/S1872-5805(22)60593-6

泥碳基氮掺杂多孔炭用于光热辅助可见光光解水制氢

doi: 10.1016/S1872-5805(22)60593-6
基金项目: 国家自然科学基金(U2003216);中央高校基本科研业务费专项资金(DUT20LAB131)
详细信息
    通讯作者:

    肖 南,副教授. E-mail:nxiao@dlut.edu.cn

    邱介山,教授. E-mail:qiujs@mail.buct.edu.cn

  • 中图分类号: TQ127.1+1

Peat-derived nitrogen-doped porous carbons as photothermal-assisted visible-light photocatalysts for water splitting

Funds: National Natural Science Foundation of China (U2003216); Fundamental Research Funds for the Central Universities of China (DUT20LAB131)
More Information
  • 摘要: 光催化析氢反应被认为是最有前途的制氢方法之一。炭材料是大规模、低成本光解水制氢的潜在催化材料,然而目前其光催化活性仍旧较低,还不足以满足实际应用要求。本文以廉价易得的泥炭为原料,通过与尿素共炭化制备了一种氮掺杂多孔炭,作为光热辅助可见光催化剂,利用炭材料优异的光热效应提高体系温度,进而提高光催化活性。在可见光照射下,这种泥碳基炭材料可使体系温度在15 min内从室温提高至55 °C,光催化活性提高25%左右。系统考察了结晶度与氮掺杂含量对炭材料光催化性能的影响,发现在光热效应的促进下,N含量为4.88 at%且有适宜结晶度的炭材料表现出优异的光催化性能,析氢速率达到75.6 μmol H2 g−1 h−1
  • FIG. 1541.  FIG. 1541.

    FIG. 1541.. 

    Figure  1.  Structural characterization of PMNC: (a) axial cross section, (b) radial cross section and (c) a schematic illustration for PMNC.

    Figure  2.  (a) FT-IR spectra of the peat moss and PMNC, (b) survey XPS spectra of PMNC samples, (c) high-resolution C 1s spectrum, and (d) high-resolution N 1s spectrum of PMNC-800.

    Figure  3.  (a) XRD patterns and (b) Raman spectra of PMNCs.

    Figure  4.  The content and types of N in PMNCs.

    Figure  5.  (a) TG curves of the raw material for PMNC and (b, c) FTIR spectra of gas products from raw material for PMNC.

    Figure  6.  System temperature change under visible light irradiation: (a) water, (b) g-C3N4 and (c) PMNC.

    Figure  7.  Time courses of H2 evolution of (a) PMNCs and (b) PMNC-800.

    Figure  8.  Band structure diagram of PMNCs.

    Figure  9.  (a) LSV curves, (b) Nyquist plots of EIS and (c) the periodic on/off photocurrent response under visible light.

    Figure  10.  The optimized binding sites and binding energies of the H2O molecule in different catalysts: (a) pristine graphene, (b) graphitic N graphene, (c) pyrrolic N graphene, (d) pyridinic N graphene and (e) amino N graphene. (C: grey, N: blue, O: red, H: white.)

  • [1] Kuang P Y, Sayed M, Fan J J, et al. 3D graphene‐based H2 production photocatalyst and electrocatalyst[J]. Adv Energy Mater,2020,10(14):1903802.
    [2] Nasir M S, Yang G R, Ayub I, et al. Recent development in graphitic carbon nitride based photocatalysis for hydrogen generation[J]. Appl. Catal. B Environ,2019,257:117855.
    [3] Du Z, Shen S L, Tang Z H, et al. Graphene quantum dots-based heterogeneous catalysts[J]. New Carbon Materials,2021,36(3):449-467.
    [4] Wu H, Tan H L, Toe C Y, et al. Photocatalytic and photoelectrochemical systems: Similarities and differences[J]. Adv Mater,2020,32(18):1904717.
    [5] Wang T T, Zhao Q D, Fu Y Y, et al. Carbon‐rich nonprecious metal single atom electrocatalysts for CO2 reduction and hydrogen evolution [J]. Small Methods. 2019, 3(10): 1900210.
    [6] Liao G F, Gong Y, Zhang L, et al. Semiconductor polymeric graphitic carbon nitride photocatalysts: The “holy grail” for the photocatalytic hydrogen evolution reaction under visible light[J]. Energy Environ Sci,2019,12(7):2080-2147.
    [7] Jiang Z F, Sun H L, Wang T Q, et al. Nature-based catalyst for visible-light-driven photocatalytic CO2 reduction[J]. Energy Environ Sci,2018,11(9):2382-2389.
    [8] Liu G Y, Li K K, Jia J, et al. Coal-based graphene as a promoter of TiO2 for photocatalytic degradation of organic dyes[J]. New Carbon Mater,2021,36(2):1-11.
    [9] Wang L, Xu X, Cheng Q F, et al. Near-infrared-driven photocatalysts: Design, construction, and applications[J]. Small,2021,17(9):e1904107.
    [10] Meng F P, Liu Y Z, Wang J, et al. Temperature dependent photocatalysis of g-C3N4, TiO2 and ZnO: Differences in photoactive mechanism[J]. J Colloid Interface Sci,2018,532:321-330.
    [11] Bie C B, Yu H G, Cheng B, et al. Design, fabrication, and mechanism of nitrogen-doped graphene-based photocatalyst[J]. Adv Mater,2021,33(9):e2003521.
    [12] Wang T Y, Huang H B, Li H L, et al. Carbon materials for solar-powered seawater desalination[J]. New Carbon Mater,2021,36(4):683-701.
    [13] Zhu C, Zhu M M, Sun Y, et al. Defects induced efficient overall water splitting on a carbon-based metal-free photocatalyst[J]. Appl Catal. B Environ,2018,237:166-174.
    [14] Wang Z, Li C, Domen K. Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting[J]. Chem Soc Rev,2019,48(7):2109-2125.
    [15] Afroz K, Moniruddin M, BakranKudaibergenov S, et al. A heterojunction strategy to improve the visible light sensitive water splitting performance of photocatalytic materials[J]. J Mater Chem A,2018,6(44):21696-21718.
    [16] Wang H L, Zhang L S, Chen Z G, et al. Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances[J]. Chem Soc Rev,2014,43(15):5234-5244.
    [17] Takanabe K. Photocatalytic water splitting: Quantitative approaches toward photocatalyst by design[J]. ACS Catal,2017,7(11):8006-8022.
    [18] Zhang P, Lou X W. Design of heterostructured hollow photocatalysts for solar‐to‐chemical energy conversion[J]. Adv Mater,2019,31(29):1900281.
    [19] Kranz C, Wachtler M. Characterizing photocatalysts for water splitting: From atoms to bulk and from slow to ultrafast processes[J]. Chem Soc Rev,2021,50(2):1407-1437.
    [20] Ding J, Wang H L, Li Z, et al. Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes[J]. ACS Nano,2013,7(12):11004-11015.
    [21] Frisch M J, Trucks H B S G W, Scuseria G E. Cheeseman. Gaussian 16, Revision A. 03[Z], Gaussian, Inc. Wallingford CT. 2016.
    [22] Becke A D. Density-functional thermochemistry[J]. J Chem. Phys,1993,98(7):5648-5652.
    [23] Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction[J]. J Comput Chem,2006,27(15):1787-1799.
    [24] Schwabe T, Grimme S. Double-hybrid density functionals with long-range dispersion corrections: Higher accuracy and extended applicability[J]. Phys Chem Chem Phys,2007,9(26):3397-3406.
    [25] Qiu B C, Zhu Q H, Du M M, et al. Efficient solar light harvesting CdS/Co9S8 hollow cubes for Z-Scheme photocatalytic water splitting[J]. Angew Chem Int Ed,2017,56(10):2684-2688.
    [26] Sun J H, Zhang J S, Zhang M W, et al. Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles[J]. Nat Commun,2012,3(1):1139.
    [27] Tu W G, Zhou Y, Liu Q, et al. Robust hollow spheres consisting of alternating titania nanosheets and graphene nanosheets with high photocatalytic activity for CO2 conversion into renewable fuels[J]. Adv Funct Mater,2012,22(6):1215-1221.
    [28] Wang B, Jiang Z F, Yu J C. Treated rape pollen: A metal-free visible-light-driven photocatalyst from nature for efficient water disinfection[J]. J Mater Chem A,2019,7(15):9335-9344.
    [29] Chen L C, Teng C Y, Lin C Y, et al. Architecting nitrogen functionalities on graphene oxide photocatalysts for boosting hydrogen production in water decomposition process[J]. Adv Energy Mater,2016,6(22):1600719.
    [30] Sun J, Zheng G Y, Lee H W, et al. Formation of stable phosphorus-carbon bond for enhanced performance in black phosphorus nanoparticle-graphite composite battery anodes[J]. Nano Lett,2014,14(8):4573-4580.
    [31] Choudhary S, Mungse H P, Khatri O P. Dispersion of alkylated graphene in organic solvents and its potential for lubrication applications[J]. J Mater Chem,2012,22(39):21032.
    [32] Noel S, Liberelle B, Robitaille L, et al. Quantification of primary amine groups available for subsequent biofunctionalization of polymer surfaces[J]. Bioconjug Chem,2011,22(8):1690-1699.
    [33] Yeh T F, Chen S J, Teng H. Synergistic effect of oxygen and nitrogen functionalities for graphene-based quantum dots used in photocatalytic H2 production from water decomposition[J]. Nano Energy,2015,12:476-485.
    [34] Tossi C, Hällström L, Selin J, et al. Size- and density-controlled photodeposition of metallic platinum nanoparticles on titanium dioxide for photocatalytic applications[J]. J Mater Chem,2019,7(24):14519-14525.
    [35] Li X G, Bi W T, Zhang L, et al. Single-atom Pt as Co-catalyst for enhanced photocatalytic H2 evolution[J]. Adv Mater,2016,28(12):2427-2431.
    [36] Gao Z Q, Chen K Y, Wang L, et al. Aminated flower-like ZnIn2S4 coupled with benzoic acid modified g-C3N4 nanosheets via covalent bonds for ameliorated photocatalytic hydrogen generation[J]. Appl Catal B Environ,2020,268:118462.
    [37] Zhang L H, Jin Z Y, Huang S L, et al. Bio-inspired carbon doped graphitic carbon nitride with booming photocatalytic hydrogen evolution[J]. Appl Catal B Environ,2019,246:61-71.
    [38] Yang Y, Zhang C, Huang D L, et al. Boron nitride quantum dots decorated ultrathin porous g-C3N4: Intensified exciton dissociation and charge transfer for promoting visible-light-driven molecular oxygen activation[J]. Appl Catal B Environ,2019,245:87-99.
  • 20210216-Supporting information.pdf
  • 加载中
图(11)
计量
  • 文章访问数:  232
  • HTML全文浏览量:  161
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-16
  • 修回日期:  2021-12-01
  • 网络出版日期:  2021-12-22
  • 刊出日期:  2022-06-01

目录

    /

    返回文章
    返回